首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The formation of nanocrystal -martensite structures (NCS) in the surface layers of carbon and alloy steels under conditions of sliding friction and abrasion is investigated by electron microscopic, x-ray, and metallographic methods. The influence of the dynamic strain aging of martensite and strain dissolution of the carbide phase on the strength (microhardness and shear resistance) and tribological properties (wear resistance and friction coefficient) of nanocrystal surface layers of steels with martensitic base is demonstrated. The role of nanocrystal martensite in adhesive, abrasive, and fatigue wear resistance of steels is examined. The negative influence of the oxidizing air environment on the effective strength and wear resistance of friction NCS is demonstrated. The increased resistance of friction NCS of high-carbon steel to softening after tempering and friction heating is established.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 65–80, August, 2004.  相似文献   

2.
A dynamic model of the nanostructuring burnishing of a surface of metallic details taking into consideration plastic deformations has been suggested. To describe the plasticity, the ideology of dimension reduction method supplemented with the plasticity criterion is used. The model considers the action of the normal burnishing force and the tangential friction force. The effect of the coefficient of friction and the periodical oscillation of the burnishing force on the burnishing kinetics are investigated.  相似文献   

3.
Dynamics simulation of burnishing of a thin steel layer beneath an indenter applied with a constant force and then moving with a constant velocity was performed by the finite element method in the plane strain approximation. The indenter was modeled by a perfectly rigid body, and the steel was modeled by an elastoplastic body with isotropic hardening according to an experimentally defined law. The regularities of changes in the stressstrain state of the material near the treated surface were studied and mechanisms of the formation of a nanostructured layer were disclosed. The effect of the friction coefficient and the burnishing force on the height of a bulge of edged material was analyzed. The results of studies agree well with experimental data.  相似文献   

4.
Polymerization of monomer reactants (PMR)-type polyimide was synthesized and the homogeneous matrix resin solution (30–40% solid) was used to prepare film blocks for tribological tests. Compared with a thermoplastic polyimide with similar molecular formula and similar behavior of weight loss under heating, the high glass transition (Tg) and char yield of the PMR polyimide can be attributed to the self-reaction of phenylethynyl groups to result in a cross-linked structure. Tribological studies on both PMR type thermosetting polyimide and thermoplastic one showed that the friction coefficient and wear rate of the former polyimide were lower than that of the latter one under both similar and even more critical conditions. Scanning electron microscope examinations of worn surfaces and wear debris show that the wear type of the thermoplastic polyimide was adhesive wear and that of the thermosetting one was fatigue wear. In terms of all good tribological properties, this PMR-type thermosetting polyimide, due to its high PV limit, could be a potential candidate for tribo-material in dry sliding against steel under high speed and large load.  相似文献   

5.
Abstract

The demand for reducing wear and friction has become the chief aim in the automotive industry nowadays. The usage of lubricant is not considered enough as there is still room for improvements. As a solution, much research has arisen towards what we called self-lubricating ideas, in order to reduce friction better than lubricant. This paper presents an overview wear mechanism and the interface of carbon-based materials. This paper will also discuss the interfaces by carbon as substrate and coating layer. The findings show that for metals, the predominant wear mechanisms were abrasion and fatigue. Meanwhile, for polymers and coating (DLC), they were abrasive along with adhesive wear. The surface roughness of the substrate plays a crucial role in increasing the excellent performance of the DLC coating. The interfaces of carbon elements definitely give huge impact on both self-lubricant materials and coatings where the coefficient of friction and wear rate changes drastically even with 1 wt.% addition. Nevertheless, a clear understanding of the factors that affect the tribological performance is very essential in performance improvement for potential applications.  相似文献   

6.
In the present work, a novel process has been developed to improve the tribological and corrosion properties of austenitic stainless steels. Efforts have been made to deposit titanium coatings onto AISI 316L stainless steel by magnetron sputtering, and then to partially convert the titanium coatings to titanium oxide by thermal oxidation. The resultant coating has a layered structure, comprising of rutile-TiO2 layer at the top, an oxygen and nitrogen dissolved α-Ti layer in the middle and a diffuse-type interface. Such a hybrid coating system showed good adhesion with the substrate, improved corrosion resistance, and significantly enhanced surface hardness and tribological properties of the stainless steel in terms of much reduced friction coefficient and increased wear resistance.  相似文献   

7.
New superhard coatings based on Ti-Hf-Si-N with good physical and mechanical properties have been fabricated. A comparative analysis of the physical, mechanical, and tribomechanical characteristics of the coatings has been performed. The values of hardness, modulus of elasticity, elastic recovery, adhesive strength, friction coefficient, and wear rate of the coatings have been determined and calculated. The specific features of deformation and fracture of the coatings deposited on a steel substrate during the adhesion tests have been described. It has been shown that the parameters measured during scratching make it possible to distinguish the threshold values of the critical load, which lead to different (cohesive and adhesive) types of failure of the coatings during tribological tests. The stoichiometry for different series of samples with Ti-Hf-Si-N coatings has been determined using Rutherford backscattering, secondary ion mass spectrometry, and energy dispersive microanalysis.  相似文献   

8.
3-Aminopropyltriethoxysilane (APTES) thin films were prepared on the hydroxylated silicon substrate by a self-assembling process from formulated solution. Chemical compositions of the films were detected by X-ray photoelectron spectrometry (XPS). The thickness of the films was determined with an ellipsometer, while the morphologies of the original and worn surfaces of the samples were analyzed by means of atomic force microscopy (AFM) and scanning electron microscopy (SEM), respectively. The tribological properties of APTES thin films sliding against GCr15 steel ball were evaluated on a UMT-2MT reciprocating friction and wear tester. It was found that the macroscopic friction coefficients for coating times more than 1 h ranged from 0.177 to 0.3 whereas the value for short coating time was as high as 0.8. It was also found that the tribological behaviors of APTES films were sensitive to normal load and sliding velocity. SEM observation of the morphologies of worn surfaces indicates that the wear of silicon is characteristic of brittle fracture and severe abrasion. Differently, abrasion and micro-crack dominate the wear of APTES–SAM. The superior friction reduction and wear resistance of APTES films compared to the silicon substrate are attributed to good adhesion of the films to the substrate.  相似文献   

9.
State-of-the-art means of physical materials science are used to study the structure, phase composition, defect substructure, and tribological properties of a coating formed on low-carbon Hardox 450 martensite steel via the electrocontact deposition of an Fe–C–Ni–B wire and modified through subsequent irradiation with high-intensity pulsed electron beams. It is shown that electron-beam treatment results in the formation of a modified 50-μm thick surface layer, the main phases of which are the α-phase, iron boride FeB, and boron carbide B4C. In the layer modified by electron-beam treatment, the transverse size of batch martensite crystals is reduced by a factor of 3, relative to the initial Hardox 450 steel, and ranges from 50 to 70 nm. It is established that the wear resistance of the deposited layer after electron-beam treatment grows by more than 20 times with respect to the wear resistance of Hardox 450 steel, and the friction coefficient is reduced by a factor of 3.5. The microhardness of a deposited layer ~7 mm thick is more than double that of the base metal.  相似文献   

10.
This paper presents an experimental and theoretical investigation of friction and wear of a spherical indenter. With the pin-on-disc-tribometer the out-of-plane oscillations are applied to the sliding indenter. Oscillations lead to a decrease of the coefficient of friction, and this effect is also related to the sliding velocity and oscillation amplitude. During the sliding movement, the contact area of indenter increases due to the wear of material. This radius of the worn spherical cap is measured after each sliding period. It is found that the radius of the wear flat increases with sliding distance according to a power law with the power 1/4 and is independent of the sliding velocity. It further is practically insensitive to the presence of oscillations. A theoretical analysis and a numerical simulation based on the method of dimensionality reduction are carried out, both describing the experimental data very well.  相似文献   

11.
The WC-Co coating obtained by atmospheric plasma spraying (APS) was modified by Cu electrochemical impregnation. The copper has infiltrated into and filled up the pores in WC-Co coating. The tribological properties of the coating against the stainless steel ball as sliding pairs were investigated with a ball-on-disc (BOD) configuration in air at room temperature. The as-prepared samples were characterized by means of optical microscope, scanning electron microscope and X-ray diffraction. It was found that the frictional behavior of the WC-Co coating followed by Cu electrochemical impregnation was superior to that of WC-Co coating. The wear mechanism of the WC-Co coating followed by Cu electrochemical impregnation was microcutting, whilst that of a WC-Co coating was the fatigue wear. The improvement in tribological properties of the WC-Co coating followed by Cu electrochemical impregnation was attributed to the formation of self-lubricating Cu film on the wear surface which induces the transformation of wear mechanism.  相似文献   

12.
The friction wear of surfaces of 40Cr (40Khr) structural steel and 12Cr18Ni10Ti (12Kh18N10T) stainless steel is investigated. It is established, by comparison of the wear of initially annealed 40Cr steel after hardening by radiation from a CO2 laser to various degrees of surface microhardness and separately after volume heat treatment, that the wear is due to fatigue in the entire range of microhardness, regardless of the dispersive properties of the structures. It is shown that the resistance to wear tends to increase with increase of the microhardness of the bearing surfaces. The dependence of the rate of wear on the surface microhardness is obtained. It is found that the wear process is accompanied by formation of a special structurally stressed state in the Saint-Venant region; this state is characterized by a constant hardness level independently of the preceding state of the material.Translation of Preprint No. 196, Lebedev Institute of Physics, Academy of Sciences, USSR, Moscow (1990).  相似文献   

13.
Thin films of ultrahigh molecular weight polyethylene (UHMWPE) were prepared on glass and silicon using a dip-coating technique, followed by removal of the decahydronaphthalene solvent at 140?°C for 20?hours and cooling in the oven in air. The wetting ability of the films was investigated by a contact angle method. The tribological behavior of the films was investigated using a ball-on-disk configuration in reciprocating mode. The reciprocating frequency of 4?Hz and single sliding distance of 5?mm used corresponded to a sliding speed of 40?mm/s. The counterface was a GCr15 steel ball with diameter of 3?mm and the normal frictional loads were 10–300?g. The worn surfaces on the films and wear scars on the steel ball were observed and analyzed by scanning electron microscopy (SEM). It was found that the surface morphologies of the films on glass and silicon were different, which is ascribed to the difference in thermal conductivity of the glass and silicon. Evaporation of the solution caused micro-orifices in the films on glass. The water contacting angle of about 87° on the films on the two substrates was similar to that of bulk UHMWPE. Their friction coefficient of about 0.1–0.2 indicated the films were self-lubricating. The wear life of the films decreased quickly with the increase of friction load. At light friction loads, the films showed excellent wear resistance. Extrusion was believed to be the main wear mechanism of the films.  相似文献   

14.
40Cr钢表面激光熔覆层的磨损性能   总被引:4,自引:3,他引:1       下载免费PDF全文
 为研究模具钢熔覆层的磨损性能,采用铁基粉在40Cr钢表面进行激光熔覆,以激光熔覆层为上试样,GCr15钢珠为下试样,采用HT-500磨损试验机进行摩擦磨损试验,并与40Cr基体的磨损性能相对比。利用表面形貌仪测量磨痕深度和宽度。研究结果表明:载荷小于250 g时,相同载荷下基体的摩擦系数大。载荷小于300 g时,随磨损时间延长,熔覆层、基体的摩擦系数都随着载荷增加而减小。当载荷为300 g时,基体的摩擦系数在0.563~0.589之间变化,平均值为0.576,且随时间逐渐升高,耐磨性变差;熔覆层的磨擦系数在0.431~0.457之间变化,平均摩擦系数为0.444,磨痕深度和宽度分别是0.65 mm和1.096 μm,且随时间逐渐下降,表现了良好的耐磨性能。当载荷增加到500 g时,平均摩擦系数和磨痕深度比300 g时分别增加了75%和47倍,且摩擦系数逐渐升高,磨损性能下降。  相似文献   

15.
Polyimide composites filled with aramid fiber (AF) and polytetrafluoroethylene (PTFE) were prepared by hot press molding. The thermal, mechanical, and tribological properties of the composites were studied systematically. The friction and wear behavior, sliding against GCr15 steel balls, were evaluated in a ground-based wear in space simulation facility using a ball-on-disk tribosystem. The morphologies of the worn surfaces during the sliding process of the composites were analyzed by scanning electron microscopy to reveal the wear mechanism. It was found that the heat-resisting performance and the hardness of the composites were minimally affected by the additives. The flexural strength of polyimide/AF/PTFE (PI-3) decreased when PTFE was added. The wear resistance increased and the coefficient of friction decreased due to the effect of both fillers. In vacuum, the friction coefficients of polyimide (PI-1), polyimide/AF (PI-2), and PI-3 increased slightly with sliding velocity, while the opposite results were obtained in air. With the increase of air pressure the friction coefficients of the samples increased.  相似文献   

16.
Polyphenylene sulfide (PPS) fiber materials, whose raw fibers had been heat treated previously for 1 to 5 days, were prepared by a hot-pressing method. The tribological properties of PPS resin and fiber materials against an AISI 1045 steel ring were evaluated using a block-on-ring wear tester. The results showed that the sample whose raw fibers had been heated at 240°C for 1 day (S1) exhibited the highest impact strength as well as the lowest friction coefficient and wear rate. The friction coefficient of S1 was 39% lower than that of the PPS resin material, and its wear rate was 1 to 2 orders of magnitude lower than those of the other samples. DSC analysis results indicated that the condensed structure of the samples gradually changed from the crystalline to the amorphous state with the increase of heat-treatment time of the raw fibers. DMA and DSC analysis results proved that severe, oxidative cross-linking reactions occurred when the raw fibers were heated over 3 days. It is concluded that proper heat treatment of the raw fibers is advantageous to improve the degree of crystallinity and appropriate oxidative cross-linking; therefore, the prepared PPS fiber material can exhibit better mechanical and tribological performances.  相似文献   

17.
采用真空离子镀的方式在AISI D2钢基体上制备渗N,TiN及复合涂层,并采用模拟和实验的方法研究涂层的磨损性能.将Archard经典粘着磨损模型离散化后用Fortran子程序的形式嵌入到商业化的有限元软件中,以求解接触摩擦过程中接触区每个节点或单元的磨损深度,定量分析了基体及三种涂层的磨损深度.研究结果表明,复合涂层具有最优耐磨性能.实验结果与模拟结果相符合. 关键词: 磨损 数值模拟 渗N TiN  相似文献   

18.
Hybrid bearings comprising ceramic or ceramic-coated steel balls and steel raceways can provide good fatigue life and resistance to wear. One of the coating materials that has received serious consideration in hybrid systems is titanium carbide (TiC). At present, the commercially available process for the deposition of TiC involves the heating of steel substrates to fairly high temperatures (>900 °C). The high-temperature process involves considerable costs and complexities that are associated with the post-deposition heat treatment and repolishing of the coated steels for bearing applications. Pulsed-laser deposition (PLD) is ideally suited to deposit TiC coatings on bearing steels at room temperature. However, it is well known that codeposition of particulates has been one of the most challenging problems of PLD. This is especially of concern when dealing with hard coatings for tribological applications. Here we describe a novel and extremely simple method of depositing high-quality, particulate-free TiC coatings on bearing steel surfaces that uses PLD. The method relies on a new non-line-of-sight deposition that uses a permanent magnet and prevents particulates from arriving at the substrate. The surface roughness of TiC films deposited on steels by way of this technique has an extremely low root mean square value of 1.6 nm. The TiC films have been extensively characterized for their morphology, chemical composition, and mechanical properties with scanning electron and atomic force microscopy, X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and nanoindentation. Time-resolved emission has been used for the in situ characterization of the laser-ablated TiC plume and has resulted in the identification of various plume species as a function of laser parameters. The spectroscopic results are correlated to film growth and to our modified PLD method.  相似文献   

19.
Carbon fibers-reinforced polyimide composites (CF-PI) were fabricated by means of a hot press molding technique. To contrast the effects of ultraviolet and atomic oxygen irradiation under high vacuum on the tribological properties of CF-PI composites, the friction and wear properties of the composites sliding against GCr15 steel ball before and after irradiation were conducted in high vacuum on a ball-on-disk test rig. The experimental results revealed that CF-PI composites exhibited higher modulus and lower coefficient of friction and worn rate value than pure polyimide under high vacuum. However, the coefficient of friction of composites increased and the worn rate value decreased after ultraviolet or atomic oxygen irradiation, which slightly affected the tribological properties of CF-PI composites. The chemical composition of the composites changed after irradiation was inspected by X-ray photoelectron spectroscopy. Microstructure of the worn surfaces of the tested composites was investigated by scanning electron microscopy to reveal the wear mechanism.  相似文献   

20.
Using the supersonic plasma spraying (SPS) technique, a composite ceramic-Ni60 coating was prepared on a 45# steel substrate. The particle morphology, coating morphology, and phase structure of the coating were analyzed via scanning electron microscopy and X-ray diffraction. Moreover, the tribological properties of the coating were determined via friction and wear experiments. The results revealed that: the crystal structure of the SPS-produced coating is composed of six phase-structure types, and the coating structure was dense with low porosity. During the wear test (rotation speed of ball: 300 rpm, load: 50 N), the friction coefficient decreased by 32.75%, and the coating underwent abrasive wear (wear mechanism).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号