首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon fibers (CF) were surface treated with air-oxidation and rare earths (RE), respectively. The friction and wear properties of polytetrafluoroethylene (PTFE) composites filled with differently surface treated carbon fibers, sliding against GCr15 steel under dry sliding condition, were investigated on a block-on-ring M-2000 tribometer. Experimental results revealed that RE treatment largely reduced the friction and wear of CF reinforced PTFE (CF/PTFE) composites. The RE treated composite exhibited the lowest friction and wear under dry sliding. Scanning electron microscopy (SEM) investigation of worn surfaces and transfer films of CF/PTFE composites showed that RE treated CF/PTFE composites had the smoothest worn surface under given load and sliding speed, and a continuous and uniform transfer film formed on the counterface. X-ray photoelectron spectroscopy (XPS) study of carbon fiber surface showed that the oxygen concentration was obviously increased after RE treatment, and more carboxyl groups were introduced onto CF surfaces after RE treatment. The increase in the amount of oxygen-containing groups increased the interfacial adhesion between CF and PTFE matrix, and accordingly increased the tribological properties of the composite.  相似文献   

2.
The friction and wear properties of polyphenylene sulfide (PPS), polyethersulfone (PES) and polysulfone (PSU), which have similar molecular structure, were investigated using an end-face contact tribometer in three different cooling ways: sliding without air cooling, sliding with air cooling, and sliding in water. The worn surface and wear debris were observed using a scanning electron microscope (SEM). The effect of frictional heat on the tribological properties of the polymers was comparatively studied. When sliding in air, with increasing applied load, the wear rate of PPS decreased slightly initially then increased later while the wear rate of PES and PSU increased through out. The results suggested that the friction coefficient was mainly affected by the temperature of the worn polymer that was controlled by the balance of heat flow of the whole sliding contact system. When sliding in water, the friction coefficients of the three polymers decreased compared to that sliding in air and remained relatively steady through the whole process under different load. The wear rates of the three polymers had a close value and, remarkably, increased compared to that sliding in air. The water cooling and lubrication role decreased the tribological properties difference between the polymers.  相似文献   

3.
Carbon fibers-reinforced polyimide composites (CF-PI) were fabricated by means of a hot press molding technique. To contrast the effects of ultraviolet and atomic oxygen irradiation under high vacuum on the tribological properties of CF-PI composites, the friction and wear properties of the composites sliding against GCr15 steel ball before and after irradiation were conducted in high vacuum on a ball-on-disk test rig. The experimental results revealed that CF-PI composites exhibited higher modulus and lower coefficient of friction and worn rate value than pure polyimide under high vacuum. However, the coefficient of friction of composites increased and the worn rate value decreased after ultraviolet or atomic oxygen irradiation, which slightly affected the tribological properties of CF-PI composites. The chemical composition of the composites changed after irradiation was inspected by X-ray photoelectron spectroscopy. Microstructure of the worn surfaces of the tested composites was investigated by scanning electron microscopy to reveal the wear mechanism.  相似文献   

4.
The effects of copper and polytetrafluoroethylene (PTFE) on thermal conductivity and tribological behavior of polyoxymethylene (POM) composites were investigated by a hot disk thermal analyzer and an M-2000 friction and abrasion testing machine. The results indicated that the incorporation of 3 wt% copper particles into POM had little effect on the thermal conductivity of POM composites, but led to the decreased friction coefficient and wear rate of composites. As the copper content was increased, the thermal conductivity increased and reached 0.477 W m?1 K?1 for POM-25% Cu composite, an increase of 35.9% compared with that of unfilled POM, while the friction coefficient and wear rate of composites also increased. The incorporation of PTFE into POM-Cu composites had a negligible effect on the thermal conductivity of composites, but helped in the formation of a continuous and uniform transfer film and resulted in the reduction in the friction coefficient and wear rate of composites. The POM-15% Cu-10% PTFE composite, with a value of wear rate similar to unfilled POM possessed higher thermal conductivity and lower friction coefficient.  相似文献   

5.
Polyacrylonitrile (PAN)-based carbon fabric (CF) was modified with strong HNO3 oxidation and then introduced into polyimide (PI) composites. The friction and wear properties of the carbon fabric reinforced polyimide composites (CFRP), sliding against GCr15 stainless steel rings, were investigated on an M-2000 model ring-on-block test rig under dry sliding. Experimental results revealed that the carbon fiber surface treatment largely reduced the friction and wear of the CFRP. Compared with the untreated ones, the surface-modified CF can enhance the tribological properties of CFRP efficiently due to the improved adhesion between the CF and the PI matrix. Scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) study of the carbon fiber surface showed that the fiber surface became rougher and the oxygen concentration increased greatly after surface treatment, which improved the adhesion between the fiber and the PI matrix and improved the friction-reduction and anti-wear properties of the CFRP. An erratum to this article can be found at  相似文献   

6.
《Composite Interfaces》2013,20(4):337-346
Air-oxidation and ozone surface treatment of carbon fibers (CF) on tribological properties of CF reinforced polytetrafluoroethylene (PTFE) composites under oil-lubricated conditions was investigated. Experimental results revealed that ozone treated CF reinforced PTFE (CF/PTFE) composite had the lowest friction coefficient and wear under various applied loads and sliding speeds compared with untreated and air-oxidated composites. X-ray photoelectron spectroscopy (XPS) study of the carbon fiber surface showed that, after ozone treatment, oxygen concentration was obviously increased, and the amount of oxygen-containing groups on CF surfaces were increased greatly. The increase in the amount of oxygen-containing groups enhanced interfacial adhesion between CF and PTFE matrix, and large scale rubbing-off of PTFE was prevented; therefore, the tribological properties of the composite were improved.  相似文献   

7.
Anodized composite films containing superfine Al2O3 and PTFE particles were prepared on 2024 Al alloy using an anodizing method. The microstructures and properties of the films were studied by scanning electron microscopy, optical microscopy and X-ray diffraction. Friction wear tests were performed to evaluate the mechanical properties of the composites. Results indicate that the composite films with reinforced Al2O3 and PTFE two-particles have reduced friction coefficients and relatively high microhardness. The friction coefficient can be as small as 0.15, which is much smaller than that of an oxide film prepared under the same conditions but without adding any particles (0.25), while the microhardness can reach as high as 404 HV. When rubbed at room temperature for 20 min during dry sliding friction tests, the wear loss of the film was about 16 mg, which is about the half of that of the samples without added particles. The synthesized composite films that have good anti-wear and self-lubricating properties are desirable for oil-free industrial machinery applications.  相似文献   

8.
Carbon fabric reinforced thermoplastic polyimide composites have significant applications in the field of tribology. However, there are relatively few studies that have been focused on the investigation of these materials. In the present study, carbon fabric/polyimide (CF/PI) composites, reinforced further with SiC nanoparticles, were prepared by dip-coating and hot press molding methods. Rockwell hardness and flexural testing of the composites were conducted. The friction and wear behavior of the resulting carbon fabric composites were evaluated in a ring-on-block contact mode under dry sliding condition. The results showed that the SiC nanoparticles significantly improved the hardness and flexural strength when compared to the CF/PI composites without the SiC additions. The CF/PI composites reinforced with 5 vol% SiC nanoparticles demonstrated the most beneficial mechanical and tribological properties compared to the composites with greater and lesser SiC nanoparticles. Scanning electron microscopy (SEM) and optical microscopy (OM) were employed in order to study the mechanism of tribological behavior. A continuous and thin transfer film formed during the friction test of the composites led to a significant improvement of the tribological properties.  相似文献   

9.
Effects of atomic oxygen (AO) irradiation on the structural and tribological behaviors of polyimide/Al2O3/SiO2 composites were investigated in a ground-based simulation facility, in which the energy of AO was about 5 eV and the flux was 7.2 × 1015 cm?2.s?1. The structural changes were characterized by X-ray photoelectron spectroscopy (XPS) and attenuated total-reflection FTIR (FTIR-ATR), while the tribological changes were evaluated by friction and wear tests as well as scanning electron microscopy (SEM) analysis of the worn surfaces. It was found that AO irradiation induced the oxidation and degradation of polyimide (PI) molecular chains. The destructive action of AO changed the surface chemical structure, which resulted in changes of the surface morphology and chemical composition of the samples. Friction and wear tests indicated that AO irradiation decreased the friction coefficient but increased the wear rate of both pure and Al2O3/SiO2 filled PIs.  相似文献   

10.
《Composite Interfaces》2013,20(6):377-383
Divinylbenzene-grafted Ultra-high-molecular-weight polyethylene (UHMWPE) fibers were used to reinforce the Polytetrafluoroethylene (PTFE) composite and the friction and wear behaviors of UHMWPE/PTFE composite were studied on the ring-block machine under vacuum condition. The worn surfaces of specimens were investigated using scanning electron microscopy and energy dispersive spectroscopy (EDS). The results showed that the friction coefficient and temperature of UHMWPE/PTFE composites with surface-treated UHMWPE fiber were apparently lower than that with untreated one. In conclusion, the surface treatment favored the improvement of the higher interface strength and so had good effect on improving the tribological properties of the composites. The dominant wear mechanisms were adhesion wear, plastic deformation, brittle facture, and spalling. The EDS analysis of the worn surface indicated the trend of the tribochemical reaction of the Fe related to the transfer of the PTFE.  相似文献   

11.
A series of polyurethane (PU)/talc composites modified by a high molecular weight hydroxyl-terminated polydimethylsiloxane (HTPDMS) were prepared. The effect of the talc content on the mechanical, wettability and tribological properties of the PU composites was studied. Tensile strength of the PU composites reached to the maximum after adding 5% talc. The water contact angles (CA) of the original surfaces and worn surfaces of the polyurethane composites were measured. The experimental results indicated that the contact angles of the worn surface increased after friction. The friction and wear experiments were tested on a MRH-3 model ring-on-block test rig at different sliding speeds and loads under dry sliding and water lubrication. Experimental results revealed that the talc contributed to largely improve the tribological properties of the PU composites. The coefficient of friction (COF) of the composites increased with increasing talc. Scanning electron microscopic (SEM) investigations showed that the worn surfaces of the talc filled PU composites were smoother than pure polyurethane under given load and sliding speed.  相似文献   

12.
The 4,4′-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) was used to synthesize polyimide to introduce different amounts of fluoride to the main chain of polyimide. The infrared spectra indicate that the imidizing process was almost complete and fluorinated monomer was formed in the structure. Fluoride-containing polyimide showed better thermal stability, higher tensile strength, and lower surface energy than neat polyimide. The increase of the fluoride monomer ratio contributed to the tribological properties of polyimide. The friction coefficient decreased with the increase of the fluoride monomer ratio. Surface-free energy and friction heat can alter the physical state of polymer sliding surfaces, and had a great effect on the tribological behaviors. Abrasive wear was designed and executed in this work. The wear rate decreased with the increase of the fluoride monomer ratio.  相似文献   

13.
Effects of atomic oxygen (AO) irradiation on the structural and tribological behaviors of polytetrafluoroethylene (PTFE) composites filled with both glass fibers and Al2O3 were investigated in a ground-based simulation facility, in which the average energy of AO was about 5 eV and the flux was 5.0 × 1015/cm2 s. It was found that AO irradiation first induced the degradation of PTFE molecular chains on the sample surface, and then resulted in a change of surface morphology. The addition of Al2O3 filler significantly increased the AO resistance property of PTFE composites. Friction and wear tests indicated that AO irradiation affected the wear rate and increased the friction coefficient of specimens. The PTFE composite containing 10% Al2O3 exhibit the best AO resistance and lower wear rate after long time AO irradiation.  相似文献   

14.
Thermosetting polyimide(PI)-based nanocomposites containing various contents of nano-TiO2 were fabricated via an in situ polymerization of monomer reactants (PMR) process. Under dry sliding and water-lubricated conditions the friction and wear behaviors of the PMR PI and its nanocomposites were evaluated and compared. The addition of nano-TiO2 in PI contributed to improving the friction and wear behavior considerably under dry sliding. The highest change ratio of wear rate was 61% with the optimum nano-TiO2 content of 3%, while the highest change of friction coefficient was 60% with the optimum nano-TiO2 content of 9%. Under water-lubricated condition, contrarily, the addition of nano-TiO2 in PI does harm to the tribological properties. Namely, the friction coefficient of the nanocomposites increased with increasing the nano-TiO2 content. These results may be caused by the following facts: the hardness of the PI matrix would be increased by adding the nano-TiO2 reducing the ability of elastic deformation of the nanocomposites; accordingly, the poor elastic deformation hindered the formation of a water-lubrication film on the surface. An investigation on the wear tracks indicated that the wear mechanism of PI/TiO2 nanocomposites under dry sliding condition proceeded from fatigue wear to a combination of fatigue wear and abrasive wear with increasing the mass fraction of nano-TiO2.  相似文献   

15.
Abstract

It is important to optimize the properties of a material for a particular application, hence, to find the suitable material for tribological applications, the wear and friction behaviour of AA5052 in situ composites with different kind of reinforcements have been investigated. For present study, three in situ formed composites have been produced with different reinforcements namely Al3Zr, ZrB2 and combination of both (Al3Zr + ZrB2) by direct melt reaction (DMR) technique. The as-cast composites and base alloy have been characterized by X-ray diffraction (XRD), optical microscopy, electron microscopy, tensile testing, hardness and dry sliding wear and friction tests. XRD results indicate the successful formation of second phase reinforcement particles in all composites. Wear test results indicate that the cumulative volume loss increases with an increase in sliding distance while coefficient of friction shows a fluctuating tendency, whereas with increasing applied load, wear rate shows an increasing trend while coefficient of friction shows decreasing trend. The variation of wear rate with composites indicates that the composite with multiple reinforcement (Al3Zr + ZrB2) has lowest wear rate among all as-cast composites and base alloy, while coefficient of friction is higher. The responsible mechanisms concerned with wear and friction results have been discussed in detail with the help of the observation on worn surface analysis by scanning electron microscope (SEM) and 3D-profilometer. All tribological results have been correlated with the microstructural properties, strength parameters and bulk hardness of the composites.  相似文献   

16.
A series of composites with Twaron fabric as reinforcement and polytetrafluoroethylene (PTFE) as matrix were fabricated with various contents of PTFE, viz. 30, 40, 50, 60, and 70 vol%. The Rockwell hardness and tensile strength of the composites were tested according to the corresponding standards. The composites were also evaluated for their tribological behaviors on an MPX-2000A friction and wear tester. The worn surface and wear debris of the composites were observed by scanning electron microscopy (SEM) and the mechanism is discussed. The PTFE content in the composites had a great influence on both the mechanical and tribological properties. The composite with 40 vol% PTFE provided the proper wetting of the fibers and the best load transfer efficiency and, hence, showed the best mechanical properties and tribological behaviors.  相似文献   

17.
A series of castor oil-based polyurethane (PU)/epoxy resin (EP) graft interpenetrating polymer network (IPN) composites modified by two kinds of hydroxy-terminated liquid nitrile rubber (HTLN) was prepared. A systematic investigation of the tribological properties of the two kinds of HTLN-modified PU/EP IPN composites was carried out through a pin-on-disk arrangement under dry sliding conditions. Experimental results revealed that the incorporation of HTLN can improve the friction and wear properties of PU/EP IPN significantly. Both the friction coefficient and wear loss decreased with increasing content of HTLN. The worn surfaces of the samples were analyzed using scanning electron microscope and a three-dimensional (3D) noncontact surface-mapping profiler; the results showed that the worn surfaces of the PU/EP IPN composites became smooth when the HTLN was added. The mechanisms for the improvement of tribological properties are discussed.  相似文献   

18.
To improve the wear resistance of carbon fabric reinforced polyimide (CF/PI) composite, surface-modified graphene (MG) was synthesized and employed as a filler. The flexural strength, Rockwell hardness and thermal properties of the composites were tested. The composites were also evaluated for their tribological properties in a ring-on-block contact mode under dry sliding conditions. The results showed that the wear rate of MG reinforced CF/PI composites was reduced when compared to unfilled CF/PI composite. It was found that the 1?wt% MG filled CF/PI composites exhibited the optimal tribological properties. The worn surface, wear debris and transfer films were analyzed by scanning electron microscopy (SEM) and optical microscopy (OM) with the results helping to characterize the wear mechanism.  相似文献   

19.
Carbon fabric (CF) was pretreated by air-plasma bombardment and then further modified by deposition of polydopamine on the surface of the pretreated CF. Epoxy resin composites reinforced by unmodified or surface-modified carbon fabric were fabricated. The friction and wear behaviors of the resulting composites were evaluated in a ring-on-block contact mode. The flexural strength and Rockwell hardness of the composites were also evaluated. The morphologies of the worn surfaces of the unmodified and modified composites were analyzed by scanning electron microscopy. The surface treatment increased the surface roughness and changed the surface topography of the CF, which contributed to enhancing the interfacial adhesion of the composites and thus improved the mechanical properties and tribo-performance. The friction and wear properties of both the unfilled and filled composites were highly dependent on the load and sliding velocity. Moreover, the results were supplemented with scanning electron micrographs to help understand the possible wear mechanisms.  相似文献   

20.
Carbon fabric reinforced polytetrafluoroethylene (PTFE) composites with different PTFE content, viz. 30, 40, 50, 60, and 70 vol%, were fabricated by a dispersion impregnation technique followed by a hot-press process. The composites were evaluated for their mechanical and tribological properties. The tribological tests were conducted on a friction and wear tester with a ring-on-block arrangement. The mechanical properties were also tested and their relationship with tribological properties was analyzed. The worn surface and wear debris were analyzed by a scanning electron microscope (SEM) to study the wear mechanism. It was found that the resin content had a great influence on both the mechanical properties and the tribological properties, and the tribological properties were correlated with the mechanical properties. The composite with 50 vol% PTFE showed promising tribological behaviors under the selected test conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号