首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular dynamics simulation (MD) with Sutton-Chen potential for palladium-palladium, nickel-nickel and palladium-nickel interactions has been used to generate the minimum energy structures and to study the thermodynamic and dynamic properties of mixed transition metal cluster motifs of Ni n Pd(13?n) for n ≤ 13. Thirteen particle icosahedral clusters of neat palladium and nickel atoms were first reproduced accordingly with the results in literature. Then in the palladium icosahedra, each palladium atom has been successively replaced by nickel atom. Calculation is repeated for both palladium-centered and nickel-centered clusters. It is found that the nickel-centered clusters are more stable than the palladium-centered clusters and cohesive energy increases along the palladium end to nickel end. Phase transition of each cluster from one end-species to the other end-species is studied by means of caloric curve, root mean square bond fluctuation and heat capacity. Trend in variation of melting temperature is opposite to the energy trend. Palladium-centered cluster shows a premelting at low temperature due to the solid-solid structural transition. Species-centric order parameters developed by Hewage and Amar is used to understand the dynamic behavior in the solid-solid transition of palladium-centered cluster to more stable nickel-centered cluster (premelting). This species-centric order parameter calculation further confirmed the stability of nickel-centered species over those of palladium-centered species and solid-solid structural transition at low temperature.  相似文献   

2.
To elucidate the initial growth of metal on oxide surface, we studied adsorption of small nickel clusters, Nin (n = 1-5), on MgO(0 0 1) surface using first-principles method based on density-functional theory. It was found that the preferential adsorption site for an isolated Ni atom is directly above the surface oxygen atom. A strong covalent bond with partial ionic character is formed between the Ni adatom and the surface oxygen atom. Various structures were considered for the Nin isomers and 3D structures were found to be energetically more stable than 2D structures for clusters of more than two atoms. For the 2D clusters, metal-metal bonds prevail over metal-substrate bonds with increasing Ni coverage. The calculated work function and ionization energy were found to vary with Ni coverage which is attributed to the change of the surface dipole moment upon metal adsorption, while the evolution of Schottky barrier height at the initial growth stage is dominated by the adatom-induced gap states.  相似文献   

3.
In this paper, we present a photofragmentation study of mass-selected transition metal-doped cobalt cluster cations Co n TM+  (n = 8–18, TM = Ti, V, Cr, and Mn). Time-of-flight spectra recorded after laser excitation of mass-selected clusters in the gas phase show that the evaporation of a cobalt atom is the most facile dissociation channel for clusters with TM = Ti and V, suggesting an enhanced stability of the doped clusters compared to the bare ones. In contrast, for Co n TM+ with TM = Cr and Mn, the loss of the dopant atom is found to be the preferred dissociation channel. Co13Cr+ is a notable exception and favors dissociation by loss of a neutral Co atom. It is implied that substituting Mn and Cr generally destabilizes the cobalt clusters with the exception of Co12Cr+, which is relatively more stable than Co 13 + . Additional measurements of V n Co+ (n = 9–16) show that the loss of a Co atom is still the most facile dissociation channel, which is in agreement with the predicted stronger V?V bond compared to the V?Co one.  相似文献   

4.
Metastable fragmentation of silver bromide clusters   总被引:2,自引:0,他引:2  
The abundance spectra and the fragmentation channels of silver bromide clusters have been measured and analyzed. The most abundant species are AgnBrn - 1 + and AgnBrn + 1 - and Ag14Br13 + is a magic number, revealing their ionic nature. However, some features depart from what is generally observed for alkali-halide ionic clusters. From a certain size, AgnBrn - 1 + is no more the main series, and AgnBr n - 2, 3 + series become almost as important. The fast fragmentation induced by a UV laser makes the cations lose more bromine than silver ions and lead to more silver-rich clusters. Negative ions mass spectra contain also species with more silver atoms than required by stoichiometry. We have investigated the metastable fragmentation of the cations using a new experimental method. The large majority of the cations release mainly a neutral Ag3Br3 cluster. These decay channels are in full agreement with our recent ab initio DFT calculations, which show that Ag+-Ag+ repulsion is reduced due to a globally attractive interaction of their d orbitals. This effect leads to a particularly stable trimer (AgBr)3 and to quasi-planar cyclic structures of (AgBr)n clusters up to n = 6. We have shown that these two features may be extended to other silver halides, to silver hydroxides (AgOH)n, and to cuprous halide compounds. Received 9 November 2000 and Received in final form 25 January 2001  相似文献   

5.
The interactions between Ptn clusters (n?13) and a graphene sheet have been investigated by first-principles calculations based on density functional theory. For single Pt-atom and Pt2-dimer adsorptions, the stable adsorption sites are bridge sites between neighboring carbon atoms. When the number of Pt atoms in a cluster increases, the Pt-C interaction energy per contacting Pt atom becomes smaller. For smaller clusters (3?n?7), the adsorption as a vertical planar cluster is more stable than that as parallel planar or three-dimensional (3D) clusters, due to the stability of a planar configuration itself and the stronger planar-edge/graphene interaction, while the adsorption as a parallel planer cluster becomes stable for larger cluster (n?7) via the deformation of the planar configuration so as to attain the planar-edge/graphene contact. For much larger clusters (n?10), the adsorption as a 3D cluster becomes the most stable due to the stability of the 3D configuration itself as well as substantial Pt-C interactions of edge or corner Pt atoms. The interfacial interaction between a Pt cluster and graphene seriously depends on the shape and size of a cluster and the manner of contact on a graphene sheet.  相似文献   

6.
The structure, electronic and magnetic properties of HoSin(n= 1 - 12, 20) clusters have been widely investigated by first-principles calculation method based on density flmctional theory (DFT). From our calculation results, we find that for HoSin(n=1- 12) clusters except n = 7.10, the most stable structures are a replacement of Si atom in the corresponding pure Sin+1 clusters by Ho atom. The doping of Ho atom makes the stability of Si clusters enhance remarkably, and HoSin(n = 2, 5, 8, 11) clusters are more stable than their neighboring clusters. The magnetic moment of Ho atom in HoSin (n = 1 - 12, 20) clusters mainly comes from of electron of tto, and never quenches.  相似文献   

7.
The structural, electronic and magnetic properties of TMGen (TM=Mn, Co, Ni; n=1-13) have been investigated using spin polarized density functional theory. The transition metal (TM) atom prefers to occupy surface positions for n<9 and endohedral positions for n≥9. The critical size of the cluster to form endohedral complexes is at n=9, 10 and 11 for Mn, Co and Ni respectively. The binding energy of TMGen clusters increases with increase in cluster size. The Ni doped Gen clusters have shown higher stability as compared to Mn and Co doped Gen clusters. The HOMO-LUMO gap for spin up and down electronic states of Gen clusters is found to change significantly on TM doping. The magnetic moment in TMGen is introduced due to the presence of TM. The magnetic moment is mainly localized at the TM site and neighbouring Ge atoms. The magnetic moment is quenched in NiGen clusters for all n except for n=2, 4 and 8.  相似文献   

8.
金蓉  谌晓洪 《物理学报》2010,59(10):6955-6962
用B3LYP/LANL2DZ方法对ZrnPd(n =1—13)团簇的平衡几何结构、能量、频率、电子性质和磁性进行了计算.研究表明,Pd原子位于表面的异构体更为稳定,其中Zr7Pd,Zr12Pd团簇稳定性高,是幻数团簇,此外,相对于ZrnCo与ZrnFe团簇,ZrnPd团簇参与化学反应的能力较弱,化学稳定性更  相似文献   

9.
The luminescence spectra of silicate glasses with silver introduced by ion exchange have been investigated. It is shown that silver introduced into glass by ion exchange exists not only in the form of ions, but also as neutral atoms and charged and neutral molecular clusters, which provide intense luminescence in the visible spectral range. Cerium ions in glass facilitate the formation of neutral molecular silver clusters, due to which the luminescence intensity increases. It is shown that Ag n -Ce x+ complexes can be formed in glass containing cerium ions and neutral molecular silver clusters.  相似文献   

10.
Here we report a systematic theoretical study of the structure and electronic properties of Snn-1Pb and Pbn-1Sn (n = 2-13) clusters and compare these results with pure Snn and Pbn to understand the influence of the dopant elements. The calculations were carried out using the density functional theory with generalized gradient approximation for the exchange-correlation potential. Extensive search based on large number of initial configurations has been carried out to locate the stable isomers of Snn-1Pb and Pbn-1Sn (n = 2-13) clusters. The relative stability of Snn-1Pb and Pbn-1Sn (n = 2-13) clusters is analyzed based on the calculated binding energies and second difference in energy. The stability analysis of these clusters suggests that, while the substitution of Sn by Pb lowers the stability of Snn clusters, presence of Sn enhances the stability of the Pbn clusters. The results suggest that while for Snn-1Pb, n=4, 7, 10, 12 clusters are more stable than their respective neighbors, Pbn-1Sn clusters with n = 4, 7 and 9 are found to be more stable. Based on the fragmentation pattern it is seen that for Snn-1Pb and Pbn-1Sn clusters favor monomer evaporation of the Pb atom up to n =11 and n =12, respectively. Unlike this trend, the Sn11Pb undergoes fission type fragment into Sn5Pb and Sn6 clusters. A comparison between our theoretical results and surface induced dissociation experiment shows good agreement, which gives confidence on the prediction of the ground state geometries.  相似文献   

11.
Using density functional theory (DFT) with valence basis set LANL2TZ to study the relative stabilities and electronic properties of the most stable structures of Nb n V(0,?±1) (n = 1?6) clusters. The ground state structures of Nb n V (0,?±1) keep the similar geometric structure as the host Nb n clusters. The doping of vanadium atom enhances the chemical activities of Nb n clusters. The Nb3V and Nb6V are more stable than other clusters. The average binding energy of charged systems (Nb n V+ and Nb n V? clusters) are generally larger than neutral Nb n V clusters natural population analysis shows that there are charge transfers from niobium to vanadium atoms in the small Nb1?4V, however, for larger clusters (Nb5V and Nb6V), the charge transfers are from vanadium to niobium atoms. The vertical and adiabatic ionization potentials (VIP and AIP) are estimated and the vertical one is more close to experimental results.  相似文献   

12.
Ab initio calculations based on density functional theory have been performed to study the dissolution and migration of helium, and the stability of small helium-vacancy clusters HenVm (n, m=0-4) in aluminum. The results indicate that the octahedral configuration is more stable than the tetrahedral. Interstitial helium atoms are predicted to have attractive interactions and jump between two octahedral sites via an intermediate tetrahedral site with low migration energy. The binding energies of an interstitial He atom and an isolated vacancy to a HenVm cluster are also obtained from the calculated formation energies of the clusters. We find that the di- and tri-vacancy clusters are not stable, but He atoms can increase the stability of vacancy clusters.  相似文献   

13.
The structures, stabilities and electronic properties of FePbn (n=1-14) clusters have been studied using the density-functional theory (DFT). Extensive search of the ground-state structures has been carried out by considering a larger number of structural isomers for each cluster size. The Fe atom gradually falls into the interior of the Pb framework as the number of Pb atom increases from 1 to 14. The FePbn clusters at n=3, 5, 10, 12 have relatively higher stability by analyzing the averaged binding energy and the second-order energy difference. Especially, FePb12 is more stable, owing to its highest symmetrical icosahedron structure. The magnetic moments of FePbn clusters do not quench when Fe atom is encapsulated in the Pb framework and mostly originate from 3d state of Fe atom.  相似文献   

14.
A systematic and comparative theoretical study on the stabilization mechanism of titanium cluster has been performed by selecting the clusters Tin (n=3, 4, 5, 7, 13, 15 and 19) as representatives in the framework of density-functional theory. For small clusters Tin (n=3, 4 and 5), the binding energy gain due to spin polarization is substantially larger than that due to structural distortion. For medium clusters Ti13 and Ti15, both have about the same contribution. For Tin (n=4, 5, 13 and 15), when the undistorted high symmetric structure with spin-polarization is changed into the lowest energy structure, the energy level spelling due to distortion fails to reverse the level order of occupied and unoccupied molecular orbital (MO) of two type spin states, the spin configuration remains unchanged. In spin restricted and undistorted high symmetric structure, d orbitals participate in the hybridization in MOs, usually by way of a less distorted manner, and weak bonds are formed. In contrast, d orbitals take part in the formation of MOs in the ground state structure, usually in a distorted manner, and strong covalent metallic bonds are formed.  相似文献   

15.
The equilibrium geometric structures, stabilities and electronic properties of Si2Agn (n = 1–8) and pure silver Agn (n ≤ 10) clusters have been systematically investigated by using meta-generalised gradient approximation. Due to sp3 hybridisation, the lowest energy structures of Si2Agn clusters for n > 2 favour the three-dimensional structure. The silicon atoms prefer to be located at the surface of the host silver clusters. By analysing the relative stabilities, it is found that the di-bridged structure Si2Ag2 isomer is the most stable structure for Si2Agn (n = 1–8) clusters. The highest occupied–lowest unoccupied molecular orbital gaps, exhibiting a pronounced even–odd alternation, indicate that the doped clusters with even number of atoms have enhanced chemical stability than those with odd number of atoms. The results of Wiberg bond indices and electronic localisation function show that the stronger Si–Si and Si–Ag interaction may be the main driving force for the higher stability of Si2Agn clusters.  相似文献   

16.
Density functional theory (DFT) has been applied to study the geometrical and electronic structures and the catalytic properties for NO oxidation of pure Pt and PtAu clusters. The calculated results suggest that Pt10 clusters shows the most stable structure among the pure Pt n (n = 2–13) clusters with the local maximum Δ2 E value. The doping of Au atoms reduces the stability of the clusters, and Pt6Au4 cluster has the most stable structure among Pt10?n Au n (n = 1–7) clusters, due to the closest band centers between Pt and Au atoms (0.83 eV) and the obvious s–p resonance peaks near the Fermi level. Pt6Au4 cluster displays the strongest activation of O2 molecules among Pt10?n Au n (n = 0–7) clusters, owing to the clear overlap between O 2p and Pt 6 s and Au 6 s near the Fermi level, and the more positive d band center than the others. The interaction between NO and metals changes slightly in NO/Pt10-nAun (n = 2–7) systems, which is weaker than that in NO/Pt9Au system, as a result of the decreasing resonance peaks of sp hybridization near the Fermi level. Compared to pure Pt10 cluster, the lower energy barriers and larger reaction energies on Pt6Au4 cluster suggest a higher catalytic activity of PtAu cluster for the O2 dissociation and NO oxidation reactions. Our study provides atomic-scale insights into the nature of the interfacial effect that determines NO oxidation on PtAu cluster catalysts.  相似文献   

17.
Ga_nN_3(n=1~8)团簇几何结构及光电子能谱的研究   总被引:2,自引:2,他引:0  
用密度泛函理论的B3LYP方法在6-31G*的水平上,对GanN3(n=1~8)团簇的结构进行优化,并对体系的成键特性、光电子能谱及稳定性进行了计算与分析,得到了GanN3(n=1~8)团簇的最稳定结构.结果表明,当n≤5时,其基态几何结构为平面结构,N-N键在这些团簇的形成过程中起着决定性的作用;当n≥6时,其基态几何结构为立体结构,Ga-N键起主导作用;在所研究的团簇中,Ga4N3、Ga7N3的基态结构最稳定;随着n值的增大,平均极化率逐渐增强;通过对光电子能谱的分析,得到Ga-N键的振动频率与六方晶系纤锌矿结构GaN的光学声子峰值相近.  相似文献   

18.
In this work we present a simple procedure for the production of gold atomic clusters by means of a modification of the Brust’s two-phase method, using tetrahexylammonium bromide as capping agent. The gold atomic clusters obtained have the following formula: Aun, with $3 \leq \textit{n} \leq 13$ , where n is the number of gold atoms per cluster. We report the formation of different species at different stages of the reduction reaction. Au clusters were characterized by TEM, MALDI-TOF mass spectrometry and UV-vis spectroscopy. Gold clusters are stable in solution after several years of preparation.  相似文献   

19.
利用密度泛函理论中的广义梯度近似对ZrnCo(n=1—13)团簇进行了结构优化、能量和频率的计算,研究了ZrnCo团簇的平衡几何结构、稳定性、电子性质和磁性.结果表明:Zr4Co,Zr7Co,Zr9Co和Zr12Co团簇的基态稳定性较高,是幻数团簇,尤其是Zr12Co团簇基态为Ih< 关键词nCo团簇')" href="#">ZrnCo团簇 平衡几何结构 稳定性和磁性  相似文献   

20.
We have studied the atomic structure and the electronic properties of Ban clusters by the ab initio molecular dynamics method. We find that a structural transition to the bulk-like structure begins at Ba9 cluster, and the structures of the clusters are transferred to be icosahedral-like around n = 13. The relatively high stability for Ba4, Ba10 and Ba13 clusters are observed. Received 1st December 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号