首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present a scheme to realize geometric phase-shift gate for two superconducting quantum interference device (SQUID) qubits coupled to a single-mode microwave field. The geometric phase-shift gate operation is performed transitions during the gate operation. Thus, the docoherence due to energy spontaneous emission based on the levels of SQUIDs are suppressed. The gate is insensitive to the cavity decay throughout the operation since the cavity mode is displaced along a circle in the phase space, acquiring a phase conditional upon the two lower flux states of the SQUID qubits, and the cavity mode is still in the original vacuum state. Based on the SQUID qubits interacting with the cavity mode, our proposed approach may open promising prospects for quantum logic in SQUID-system.  相似文献   

2.
We present a potential scheme to implement two-qubit quantum phase gates through an unconventional geometric phase shift with two four-level SQUIDs in a cavity. The SQUID qubits undergo no transitions during the gate operation, while the cavity mode is displaced along a circle in the phase space, acquiring a geometric phase depending conditionally upon the SQUIDs’ states. Under certain conditions, the SQUID qubits are disentangled with the cavity mode and the SQUIDs’ states remain in their ground states during the gate operation, thus the gate is insensitive to both the SQUIDs’ “spontaneous emission” and the cavity decay.  相似文献   

3.
In the system with superconducting quantum interference devices (SQUID) in cavity, a scheme for constructing two-qubit quantum phase gate via a conventional geometric phase-shift is proposed by using a quantized cavity field and classical microwave pulses. In this scheme, the gate operation is realized in the subspace spanned by the two lower flux states of the SQUID system mud the population operator of the excited state has no effect on it. Thus the effect of decoherence caused from the levels of the SQUID system is possible to minimize. Under cavity decay, our strictly numerical simulation shows that it is also possible to realize the unconventional geometric phase gate. The experimental feasibility is discussed in detail.  相似文献   

4.
Based on superconducting quantum interference devices (SQUIDs) coupled to a cavity, we propose a scheme for implementing n SWAP gates simultaneously. In our scheme, the SQUID works in the charge regime, the quantum logic gate operations are performed in the subspace spanned by two charge states |0〉 and |1〉. The interaction between the qubits and the cavity field can be achieved by turning the gate voltage and the external flux. Especially, the gate operation time is independent of the number of the qubits, and the gate operation is insensitive to the initial state of the cavity mode. We also analyze the experimental feasibility that the conditions of the large detuning can be achieved by adjusting the frequency of the cavity mode, and the operation time satisfies the requirement for the designed experiment by choosing suitable detuning and the quality factor of the cavity. Based on the simple operation, our scheme may be realized in this solid-state system, and our idea may be realized in other systems.  相似文献   

5.
We proposed an efficient scheme for constructing a quantum controlled phase-shift gate and generating the cluster states with rf superconducting quantum interference devices (SQUIDs) coupled to a microwave cavity through adiabatic evolution of dark eigenstates. During the operation, the spontaneous emission is suppressed since the rf SQUIDs are always in the three lowest flux states. Considering the influence from the cavity decay with achievable
experimental parameters, we numerically analyze the success probability and the fidelity for generating the two-SQUID maximally entangled state and the controlled phase-shift gate by adiabatic passage.  相似文献   

6.
A scheme for implementing 2-qubit quantum controlled phase gate (QCPG) is proposed with two superconducting quantum interference devices (SQUIDs) in a cavity. The gate operations are realized within the two lower flux states of the SQUIDs by using a quantized cavity field and classical microwave pulses. Our scheme is achieved without any type of measurement, does not use the cavity mode as the data bus and only requires a very short resonant interaction of the SQUID-cavity system. As an application of the QCPG operation, we also propose a scheme for generating the cluster states of many SQUIDs.  相似文献   

7.
朱艳  顾永建  徐舟  谢琳  马丽珍 《光子学报》2010,39(3):537-542
提出一个量子概率克隆机的物理实现方案,该方案首先将高Q腔中的两个超导量子干涉仪分别作为初始比特和目标比特,腔模作为测量比特,通过腔模和经典微波脉冲与超导量子干涉仪的多种相互作用实现量子概率克隆机的幺正演化;然后将腔模态映射到另一个超导量子干涉仪上,通过对该超导量子干涉仪磁通量的测量完成状态坍缩,从而以最优的成功概率实现量子态的精确克隆.本方案采用双光子拉曼共振过程加快单比特门的操作速率,并且总操作时间远小于自发辐射和腔模衰变时间,因而在实验上是可行的.  相似文献   

8.
In the system with superconducting quantum interference devices (SQUIDs) in a cavity, we propose a scheme for simultaneous implementing n phase gates and one step preparing the highly entangled cluster states based on the two-channel Raman interaction. In our scheme, the system is independent to the photon number of the cavity field, the cavity field can be initially in an arbitrary state, which is convenient for the experimental operation. The n phase gates operation and the cluster state generation are realized by using only the two lower flux states of the SQUID and the excited state would not be excited so that the influence of the decoherence due to spontaneous emission of the SQUID’s levels is possible to minimize. More importantly, the operation time of the phase gates is independent of the number n of the qubits. Finally, the experimental feasibility is also discussed in detail.  相似文献   

9.
石惠敏  於亚飞  张智明 《中国物理 B》2012,21(6):64205-064205
We propose a method of realizing a three-qubit quantum gate with a superconducting quantum interference device(SQUID) in a cavity.In this proposal,the gate operation involves the SQUID ground-states and the Fock states of cavity modes b and c.The two field-modes act as the controlling qubits,and the two SQUID states form the target qubit.Since only the metastable lower levels are involved in the gate operation,the gate is not affected by the SQUID decay rates.  相似文献   

10.
We presented a scheme to implement SWAP gate in a microwave cavity. In our scheme, two superconducting quantum interference device (SQUID) qubits are coupled to a single-mode microwave cavity field by adiabatic passage method for their manipulation. This process of implementing SWAP gate is in the range of present experiments. The scheme can be easily obtained only by three steps, which does not require perform any operation. In the scheme, the operations only involve three lowest flux states of the SQUIDs, and the excited states would not be excited; therefore, the decoherence due to spontaneous emission of the SQUIDs’ levels would not affect the operations. In addition, during the whole procedure the cavity field is not necessary to be excited because it does not require transfer quantum information between the SQUID’s and the cavity field. Thus, the cavity decay is suppressed. Therefore our scheme may be realized in superconducting systems.  相似文献   

11.
We propose a scheme to implement an unconventional geometric phase gate in circuit QED, i.e. two superconducting charge qubits inside a superconducting transmission line resonator. The quantum operation depends only on global geometric features, and thus is insensitive to the state of the cavity mode.  相似文献   

12.
We put forward a simple scheme for one-step realization of a two-qubit SWAP gate with SQUIDs (superconducting quantum-interference devices) in cavity QED via Raman transition. In this scheme, the cavity field is only virtually excited and thus the cavity decay is suppressed. The SWAP gate is realized by using only two lower flux states of the SQUID system and the excited state would not be excited. Therefore, the effect of decoherence caused from the levels of the SQUID system is possibly minimized. The scheme can also be used to implement the SWAP gate with atoms.  相似文献   

13.
邵晓强  陈丽  张寿  赵永芳 《中国物理 B》2009,18(12):5161-5167
We present a scheme for implementing a three-qubit phase gate via manipulating rf superconducting quantum interference device (SQUID) qubits in the decoherence-free subspace with respect to cavity decay. Through appropriate changes of the coupling constants between rf SQUIDs and cavity, the scheme can be realized only in one step. A high fidelity is obtained even in the presence of decoherence.  相似文献   

14.
An alternative approach is proposed to realize an n-qubit Toffoli gate with superconducting quantum-interference devices (SQUIDs) in cavity quantum electrodynamics (QED). In the proposal, we represent two logical gates of a qubit with the two lowest levels of a SQUID while a higher-energy intermediate level of each SQUID is utilized for the gate manipulation. During the operating process, because the cavity field is always in vacuum state, the requirement on the cavity is greatly loosened and there is no transfer of quantum information between the cavity and SQUIDs.  相似文献   

15.
Based on superconducting charge qubits (SCCQs) coupled to a single-mode microwave cavity, we propose a scheme for generating charge cluster states. For all SCCQs, the controlled gate voltages are all in their degeneracy points, the quantum information is encoded in two logic states of charge basis. The generation of the multi-qubit cluster state can be achieved step by step on a pair of nearest-neighbor qubits. Considering effective long-rang coupling, we provide an efficient way to one-step generating of a highly entangled cluster state, in which the qubit-qubit coupling is mediated by the cavity mode. Our quantum operations are insensitive to the initial state of the cavity mode by removing the influence of the cavity mode via the periodical evolution of the system. Thus, our operation may be against the decoherence from the cavity.  相似文献   

16.
Based on superconducting quantum interference devices (SQUIDs) coupled to a cavity, we propose a scheme for implementing a quantum controlled-phase gate (QPG) and Deutsch-Jozsa (D J) algorithm by a controllable interaction. In the present scheme, the SQUID works in the charge regime, and the cavity field is ultilized as quantum data-bus, which is sequentially coupled to only one qubit at a time. The interaction between the selected qubit and the data bus, such as resonant and dispersive interaction, can be realized by turning the gate capacitance of each SQUID. Especially, the bus is not excited and thus the cavity decay is suppressed during the implementation of DJ algorithm. For the QPG operation, the mode of the bus is unchanged in the end of the operation, although its mode is really excited during the operations. Finally, for typical experiment data, we analyze simply the experimental feasibility of the proposed scheme. Based on the simple operation, our scheme may be realized in this solid-state system, and our idea may be realized in other systems.  相似文献   

17.
An alternative scheme is proposed for generating the Greenberg-Horne-Zeilinger (GHZ) and W types of the entangled states with multiple superconducting quantum-interference device (SQUID) qubits in a single-mode microwave cavity field. In this scheme, there is no transfer of quantum information between the SQUIDs and the cavity, the cavity is always in the vacuum and thus the requirement on the quality of cavity is greatly loosened. In addition, during the process of the generation of the W entangled state, the present method does not involve a real excitation of intermediate levels. Thus, decoherence due to energy relaxation of intermediate levels is minimized.  相似文献   

18.
We analyze a new scheme for quantum information processing, with superconducting charge qubits coupled through a cavity mode, in which quantum manipulations are insensitive to the state of the cavity. We illustrate how to physically implement universal quantum computation as well as multiqubit entanglement based on unconventional geometric phase shifts in this scalable solid-state system. Some quantum error-correcting codes can also be easily constructed using the same technique. In view of the gate dependence on just global geometric features and the insensitivity to the state of cavity modes, the proposed quantum operations may result in high-fidelity quantum information processing.  相似文献   

19.
彭俊  邬云文  李小娟 《光子学报》2014,40(3):466-470
基于腔量子电动力学技术,提出了利用三能级超导量子干涉仪实现Toffoli门的理论方案.利用超导量子干涉仪与腔场发生耦合,以及与外加经典脉冲发生共振跃迁来实现量子态的演化控制.该方案可以拓展到N比特Toffoli门的实现.最后,讨论了逻辑门的实验可行性,四比特Toffoli门的作用时间约为30 nm,它远小于腔衰减时间和较高能级的能量驰豫时间,从而足以实现量子态的操控.并且随着比特数的增多,Toffoli门作用时间的增幅较慢.  相似文献   

20.
本文提出了一个基于SQUIDs和腔场的大失谐相互作用传送量子信息的方案,此方案可以直接地、百分之百地实现量子信息的传送.该方案中腔场和SQUIDs系统之间没有量子信息的传递,腔场只是虚激发,这样对腔的品质因子的要求大大的降低了.同时也可以在SQUIDs之间建立传送量子信息的量子网络.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号