首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 264 毫秒
1.
高密度等离子体融断开关融蚀现象的粒子模拟研究   总被引:2,自引:2,他引:0       下载免费PDF全文
 利用自行研制的2.5维全电磁柱坐标粒子模拟程序对高密度等离子体融断开关融断区域中的融蚀现象进行了模拟研究,详细地介绍了计算模型的建立以及复杂边界的算法处理。模拟结果表明在融断开关导通电流的最后阶段,由于磁压力、磁场渗透作用和非中性静电融蚀作用,在融断区域的阴极附近会形成一定宽度的真空鞘层。由于等离子体密度的下降以及初始真空鞘层的存在,使得即使只有较小的离子电流,融蚀机制也完全可以导致PEOS最终断开。  相似文献   

2.
对PEOS功率倍增装置进行了物理设计与模拟计算并进行了脉冲等离子体枪实验。给出装置参数的选择方法,包括电路参数与PEOS参数的选择。为得到要求的功率倍增和能量传输效率,分析指出注入等离子体密度n_p与速度v_d的乘积要大而n_p相对要小,v_d要大;而且为断路快、阴极半径r要适当小;模拟计算结果证实了这一分析。对装置关键部件脉冲等离子体枪进行设计、研制和实验,在距枪60cm处测得碳离子速度v_d~5×10~(?)cm/s,离子密度n_p~4×10(?)/cm。  相似文献   

3.
 模拟了强流电子束源阴极表面附近区域数密度约1014 cm-3的等离子体的膨胀过程,观察到等离子体膨胀速度约为1 cm/μs。通过观察不同时刻阴极附近电子和离子的相空间分布、数密度分布和轴向电场分布,分析了等离子体膨胀过程。结果表明:等离子体的产生使得阴极表面电场增强,进而增大阴极的电流发射密度,电流密度增加使得空间电荷效应增强,并使等离子体前沿处的电场减小,当等离子体前沿处的电场减小到零时等离子体向阳极膨胀。讨论了等离子体温度、离子质量、束流密度和离子产生率对等离子体膨胀速度的影响。结果表明:等离子体的膨胀速度随着等离子体温度升高而增大,随离子质量增大而减小,但膨胀速度不等于离子声速;等离子体产生率越小,等离子体膨胀速度越小。  相似文献   

4.
真空电弧的特性直接受到从阴极斑点喷射出的等离子体射流的影响,对等离子体射流进行数值仿真有助于我们深入了解真空电弧的内部物理机制.然而,磁流体动力学和粒子云网格仿真方法受限于计算精度和计算效率的原因,无法有效地应用于真空电弧等离子体射流仿真模拟.本文开发了一套三维等离子体混合模拟算法,并在此基础上建立了真空电弧单阴极斑点射流仿真模型,模型中将离子作宏粒子考虑,而电子作无质量流体处理,仿真计算了自生电磁场与外施纵向磁场作用下等离子体的分布运动状态.仿真结果表明,单个阴极斑点情况下真空等离子体射流在离开阴极斑点后扩散至极板间,其整体几何形状为圆锥形,离子密度从阴极到阳极快速下降.外施纵向磁场会压缩等离子体,使得等离子体射流径向的扩散减少并且轴线上的离子密度升高.随着外施纵向磁场的增大,其对等离子体射流的压缩效应增强,表现为等离子体射流的扩散角度逐渐减小.此外,外施纵向磁场对等离子体射流的影响也受到电弧电流大小的影响,压缩效应随电弧电流的增加而逐渐减弱.  相似文献   

5.
赝火花开关放电的蒙特卡罗粒子模拟   总被引:1,自引:1,他引:0       下载免费PDF全文
采用粒子模拟和蒙特卡罗相结合的方法,应用静电求解模型,对赝火花开关初始放电过程进行了模拟。赝火花开关初始放电过程主要由汤森放电过程、等离子体形成、空心阴极效应和场致发射引发主放电组成;等离子体形成和空心阴极效应对赝火花开关的发展导通具有至关重要的作用。改变赝火花开关工作参数,如气压、电极孔径、阳极电压和阴极腔中初始粒子密度,研究其对赝火花开关电子峰值电流形成时间的影响。结果表明:随着气压、电极孔径、阳极电压和初始粒子密度的增大,赝火花开关电子峰值电流形成时间减小。  相似文献   

6.
在HT-7超导托卡马克装置上利用低杂波电流驱动有效地控制了等离子体电流分布,并使等离子体约束性能改善。数值模拟与硬X射线测量结果均表明,低杂波的发射功率谱、纵场和等离子体密度对改变等离子体电流分布有明显的影响。在优化低杂波电流驱动实验参数的条件下,等离子体密度、温度分布发生了理想的变化。在电子和离子温度分布上出现了内部输运垒,同时等离子体的能量约束时间和粒子约束时间均有提高。  相似文献   

7.
 开展了驱动电流为45,75和105 kA以及阴极直径分别为Φ20 mm和Φ40 mm下的等离子体断路开关性能实验研究。结果表明:随着发生器驱动电流增加,负载电流上升时间逐渐减小,最高电压倍增系数逐渐增加。与阴极直径为Φ20 mm的等离子体开关相比,阴极直径为Φ40 mm的等离子体开关导通时间和负载电流上升时间增加,开关电压和电流转换效率降低。实验获得的最高电压倍增系数和电流转换效率分别为4.9和97%,负载电流上升时间小于100 ns。  相似文献   

8.
高气压下的微型电热推进器(MPT)中的放电等离子体存在多负辉区结构,其负辉区有融合趋势。对矩形微放电等离子体推进器(RMPT)的负辉区融合过程进行了二维模拟分析,在方法上采用了非平衡态的自洽流体模型,并考虑了离子电流加热和三体碰撞过程。结果显示:矩形微放电等离子体推进器(RMPT)在低电流条件下存在两个稳定的负辉区,当超过某一电流阈值条件后,两个负辉区会在腔体中心重合。分析了这一过程的成因,认为其融合过程本质上是空心阴极的导通过程,其融合与否与鞘层电压有关。  相似文献   

9.
张连珠  孟秀兰  张素  高书侠  赵国明 《物理学报》2013,62(7):75201-075201
采用两维PIC/MCC模型模拟了氮气微空心阴极放电以及轰击离子 (N2+,N+) 的钛阴极溅射. 主要计算了氮气微空心阴极放电离子 (N2+,N+) 及溅射原子Ti的行为分布, 并研究了溅射Ti 原子的热化过程. 结果表明: 在模拟条件下, 空心阴极效应是负辉区叠加的电子震荡; 在对应条件下, 微空心较传统空心放电两种离子 (N2+,N+) 密度均大两个量级, 两种离子的平均能量的分布及大小几乎相同; 在放电空间N+的密度约为N2+的1/6, 最大能量约大2倍; 在不同参数 (P, T, V)下, 轰击阴极内表面的氮离子(N2+,N+)的密度近似均匀, 其平均能量几乎相等; 从阴极溅射出的Ti原子的初始平均能量约6.8 eV, 离开阴极约0.15 mm处几乎完全被热化. 模拟结果为N2微空心阴极放电等离子体特性的认识提供了参考依据. 关键词: 微空心阴极放电 PIC/MC模拟 2等离子体')" href="#">N2等离子体  相似文献   

10.
1脉冲功率技术及加速器物理 利用雪耙模型,对一个典型的微秒级导通时间等离子体断路开关物理过程进行了模拟计算,分析研究了导通物理机制和雪耙阵面的运动过程,获得了具有指导意义的数据和结果。在国内首次研制成功导通电流可达100kA的微秒导通时间等离子体断路开关,开展了等离子体枪与主回路之间的触发延时、等离子体枪数目及其工作电压对开关性能的影响规律实验研究,获得的典型数据和结果对开关的应用及等离子体源参数优化具有重要意义。  相似文献   

11.
The plasma erosion opening switch (PEOS) has been studied with the aid of the ANTHEM implicit simulation code. This switch consists of fill plasma injected into a transmission line. The plasma is ultimately removed by self-electrical forces, permitting energy delivery to a load. Here, ANTHEM treats the ions and electrons of the fill plasma and the electrons emitted from the transmission-line cathode as three distinct Eulerian fluids-with electron inertia retained. This permits analysis of charge separation effects, and avoids the singularities that plague conventional MHD codes at low density. E and B fields are computed by the implicit moment method, allowing for time steps well in excess of the electron plasma period ?t >> ?p-1, and cells much wider than a Debye length, ?x >> ?D. Switch dynamics are modeled as a function of the driving electrical pulse characteristics, the fill plasma parameters, and the emission properties of the transmission line walls-for both collisionless and anomalously collisional electrons. Our low-fill-density (ne ? 4 × 1012 electrons/cm3) collisionless calculations are in accord with earlier particle code results. Our high-density computations (ne ? 2 × 1013 electrons/cm3) show the opening of the switch proceeding through both ion erosion and magnetic pressure effects. The addition of anomalous electron collisions is found to diffuse the driving B field into the fill plasma, producing broad current channels and reduced magnetic pressure effects, in some agreement with NRL experimental measurements.  相似文献   

12.
This paper is devoted to experimental studies of a short-pulse (80 ns) inductive system with a coaxial plasma erosion opening switch (PEOS), operating at the 2-5 × 1010 W level. Scalings of the PEOS and ion diode characteristics with different parameters (PEOS plasma density and velocity, PEOS electrode geometry, load impedance, type and strength of an external magnetic field) were carried out. It was seen that for the most efficient energy and power switching to the load by the PEOS, the following conditions are preferable: high velocity and low density of the plasma flow, negative polarity of the inner PEOS electrode, coincidence of the switch current and injected plasma flow directions, the absence of an external magnetic field, and the presence of an additional self-field in the PEOS region. Power enhancement of a factor of 3 and pulse shortening by a factor of 2 were obtained under optimal conditions.  相似文献   

13.
The conduction phase of the plasma erosion opening switch (PEOS) is characterized by combining a 1-D fluid model for plasma hydrodynamics, Maxwell's equations, and a 2-D electron-orbit analysis. A self-similar approximation for the plasma and field variables permits analytic expressions for their space and time variations to be derived. It is shown that a combination of axial MHD compression and magnetic insulation of high-energy electrons emitted from the switch cathode can control the character of switch conduction. The analysis highlights the need to include additional phenomena for accurate fluid modeling of PEOS conduction.  相似文献   

14.
The conduction phase of the plasma erosion opening switch (PEOS) is studied using a 1?-D electromagnetic two-fluid code. The focus of this work is on understanding how two effects, a current-limiting model of electron emission, and the magnetic insulation of electrons at the cathode, determine current conduction in the plasma. Simulations are performed in the parameter regimes of the Gamble I, POP, and PBFA II pulsed power generators, and previous low-density, short-rise time simulations of the PEOS. Fluid code results are compared to a 1-D analytic theory and to the Gamble I and POP experiments. Good agreement between theory and simulation, but mixed agreement between simulation and experiment is found. Experimental B-field measurements on POP show weaker j × B compression than the simulation. Current penetration and plasma current channels qualitatively similar to experimental observation are found in the Gamble I regime. However, magnetic insulation of electrons emitted from the cathode bunches the electron flow into narrower current channels than observed experimentally. In several cases, the presence of an electron-scattering or energy-loss mechanism near the cathode must be invoked to overcome magnetic insulation and widen the current channels.  相似文献   

15.
This paper deals with computer simulation of plasma erosion opening switch (PEOS) operation in the context of short-pulse high-power ion beam (HPIB) generation in microsecond store systems. The scaling of PEOS parameters and ion diode characteristics with various operating conditions was determined. The simulations showed the best PEOS characteristics for a hydrogen plasma (i.e., the lowest mass) with a high flow velocity and low density, although for some applications a plasma with A/Z > 1 may be preferable. It was shown that the efficiency of HPIB generation in the diode depends on its location relative to the PEOS, the time delay of anode plasma formation, the use of a spiral electrode in the PEOS region, and the use of an arrangement involving an ion return current bypass through the PEOS region. The optimization of the PEOS and ion diode with coaxial configurations and 100 kJ stored in the 600-kV Marx yielded a 16-percent overall efficiency HPIB generation in the diode, with a diode voltage and power of 4.2 MV and 0.42 TW, respectively.  相似文献   

16.
Ion emission from the plasma of a low-pressure (≈5×10−2 Pa) glow discharge with electrons oscillating in a weak (≈1 mT) magnetic field is studied in relation to the cold hollow cathode geometry. A hollow conic cathode used in the electrode system of a cylindrical inverted magnetron not only improves the extraction of plasma ions to ≈20% of the discharge current but also provides the near-uniform spatial distribution of the ion emission current density. The reason is the specific oscillations of electrons accelerated in the cathode sheath. They drift in the azimuth direction along a closed orbit and simultaneously move along the magnetic field toward the emitting surface of the plasma. A plasma emitter with a current density of ≈1 mA/cm2 over an area of ≈100 cm2 designed for an ion source with an operating voltage of several tens of kilovolts is described.  相似文献   

17.
In this paper, we present measurements of ion and electron flows in a nanosecond plasma opening switch (NPOS) and a microsecond plasma opening switch (MPOS), performed using charge collectors. In both experiments, an electron flow toward the anode, followed by an ion flow, were observed to propagate downstream toward the load side of the plasma during the plasma opening switch (POS) conduction. In the MPOS, ion acceleration was observed to propagate axially through the entire plasma. These results are in satisfactory agreement with the predictions of the electron magnetohydrodynamics (EHMD) theory and the results of fluid and particle-in-cell (PIC) code simulations. At the beginning of the POS opening, a high-current density (≈2 kA/cm2) short-duration (10-30 ns) axial ion flow downstream toward the load was observed in both experiments, with an electron beam in front of it. These ions are accelerated at the load side of the plasma and are accompanied by comoving electrons. In the NPOS, the ion energy reaches 1.35 MeV, whereas in the MPOS, the ion energy does not exceed 100 keV. We suggest that in the NPOS the dominant mechanism for the axial ion acceleration is collective acceleration by the space charge of the electron beam, while in the MPOS, axial ion acceleration is probably governed by the Hall field in the current carrying plasma  相似文献   

18.
The importance of having high local cathode spot pressures for the self-sustaining operation of a thermal arc plasma on a cold cathode is theoretically investigated. Applying a cathode sheath model to a Cu cathode, it is shown that cathode spot plasma pressures ranging 7.4-9.2 atm and 34.2-50 atm for electron temperatures of ~1 eV are needed to account for current densities of 109 and 1010 A·m-2, respectively. The study of the different contributions from the ions, the emission electrons, and the back-diffusing plasma electrons to the total current and heat transfer to the cathode spot has allowed us to show the following. 1) Due to the high metallic plasma densities, a strong heating of the cathode occurs and an important surface electric field is established at the cathode surface causing strong thermo-field emission of electrons. 2) Due to the presence of a high density of ions in the cathode vicinity, an important fraction of the total current is carried by the ions and the electron emission is enhanced. 3) The total current is only slightly reduced by the presence of back-diffusing plasma electrons in the cathode sheath. For a current density jtot=109 A·m-2 , the current to the cathode surface is mainly transported by the ions (76-91% of jtot while for a current density jtot = 1010 A·m-2, the thermo-field electrons become the main current carriers (61-72% of jtot). It is shown that the cathode spot plasma parameters are those of a high pressure metallic gas where deviations from the ideal gas law and important lowering of the ionization potentials are observed  相似文献   

19.
The plasma erosion opening switch (PEOS) can conduct large (~megamperes) currents for several tens of nanoseconds before opening in < 10 ns, generating megavolt-level voltages in the process. In the present experiment, the conduction time of the PEOS has been extended by almost an order of magnitude to several hundred nanoseconds. The dependence of the peak conduction current on PEOS parameters and the results of magnetic probe and load voltage measurements are all consistent with PEOS theory. These results indicate that the PEOS operating mechanisms at these long conduction times are the same as those operating in previous experiments at shorter conduction times. Translation of the switch plasma into the load region, due to j? × B? forces during the conduction phase, was not observed in this experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号