首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
基于[NPB+Zn(4-TfmBTZ)2-]电致激基复合物的有机电致白光器件   总被引:1,自引:0,他引:1  
将不同浓度的NPB掺杂到一种新型有机电致发光材料Zn(4-TfmBTZ)2层中制备了有机电致白光及近白光器件,发现NPB浓度不仅影响器件的发光效率,而且影响器件的色度和显色指数.随着Zn(4-TfmB-TZ)2层中NPB摩尔分数从0%~10%逐渐增加,电致激基复合物的发射逐渐增强,器件发光效率先增加后减小,在相同电压下...  相似文献   

2.
合成了两种以钙为中心金属离子的有机电致发光材料2-(2-羟基苯基)苯并噻唑钙Ca(BTZ)2和2-(2-羟基苯基苯并噻唑)-(1,10-邻菲罗啉)合钙Ca(BTZ)2phen。通过红外光谱、紫外-可见光吸收光谱、循环伏安曲线、原子力显微镜以及光致发光光谱表征了材料的结构、光学带隙、能带结构、成膜性以及光学性能。实验结果表明,在DMSO溶液中,Ca(BTZ)2的紫外吸收峰主要为290,330,422nm;Ca(BTZ)2phen的紫外吸收峰主要为292,330,428nm。Ca(BTZ)2的荧光发射峰为458nm和500nm,色坐标为x=0.2176,y=0.3223;Ca(BTZ)2phen的荧光发射峰主要为465nm和514nm,色坐标为x=0.2418,y=0.3817。利用真空热蒸镀法可以得到均匀致密的Ca(BTZ)2phen的薄膜,其粗糙度为1.56。Ca(BTZ)2薄膜也有望通过旋涂制备。实验发现Ca(BTZ)2与Ca(BTZ)2phen的荧光光谱几乎覆盖整个可见光区域,为宽谱带发光材料,有望设计成合理的器件结构实现白光发射。  相似文献   

3.
Zn(BTZ)2白色有机电致发光材料的合成及其器件制备   总被引:10,自引:1,他引:9       下载免费PDF全文
以PCl3为脱水剂,将邻氨基硫酚与水杨酸脱水环化合成出2-(2-羟基苯基)苯并噻唑,并进一步将所得产物与乙酸锌反应合成出2-(2-羟基苯基)苯并噻唑螯合锌(Zn(BTZ)2)材料。以该配合物作为发光层制备出结构为ITO/PVK:TPD/Zn(BTZ)2/Al近白色电致发光器件,其色坐标位于白场之内(x=0.242,y=0.359),在驱动电压为16V时,亮度达3200cdm2,对应的量子效率为0.32%。进一步在Zn(BTZ)2中掺入橙红色染料Rubrene,制成ITO/PVK:TPD/Zn(BTZ)2:Rubrene/Al结构器件,实现了纯白色发光(色坐标值:x=0.324,y=0.343),非常接近于白色等能点,且量子效率达0.47%。最后对上述器件的发光和电学性能进行了深入的研究和探讨。  相似文献   

4.
利用电子传输性能良好的苯并噻唑螯合锌(Zn(BTZ)2)作为蓝光层,通过设计不同类型的空穴传输层并试验不同厚度的发光层后,制作了一种最佳厚度的双发光层白色电致发光器件:氧化铟锡(ITO)/N-N′-双(3-甲基苯基)-N-N′-二苯基-1-1′-二苯基-4-4′-二胺(TPD)∶N,N′-二(1-萘基)-N,N′-二苯基-1,1′-联苯-4-4′-二胺(NPB)(1∶0.0 关键词: 厚度 空穴传输层 白光 载流子  相似文献   

5.
以乙二胺和二苯乙二酮为原料合成了5,6-二苯基-2,3-二氢吡嗪(Dpdhpz),Dpdhpz在Ir Cl3·3H2O或三氟化硼乙醚等路易斯酸作用下发生自身氧化偶联得到了5,5',6,6'-四苯基-2,2'-联吡嗪(Dbppz)。在四氢呋喃(THF)溶液中,Dbppz的光致发光(PL)为深蓝色,最大发射峰位于400 nm,CIE坐标为(0.16,0.03)。Dbppz在THF溶液中最大量子效率为89%,在聚苯乙烯薄膜(Dbppz质量分数5%)中的量子效率为78%。将Dbppz制备成器件结构为ITO/HAT-CN(5 nm)/NPB(40 nm)/Dbppz(20 nm)/Tm Py PB(40 nm)/Li F(1 nm)/Al(100 nm)的非掺杂电致发光器件。实验发现,该非掺杂器件并没有产生预期的蓝色发光,而是意外地得到了一个白光器件。我们推测产生白光发射的原因与发光层和空穴传输层之间相互作用有关。由于空穴传输层NPB的芳胺结构具有电子给体性质,而Dbppz的吡嗪结构具有电子受体结构,发光层与空穴传输层的界面发生了电子给体和电子受体的相互作用,形成了激基复合物。在电致发光(EL)光谱中,除了Dbppz发光材料在415 nm的发射外,在550 nm还出现强的激基复合物的发射。激基复合物的产生使得EL发射出现了长波长光谱,同时减弱了发光层的"本征"发光。蓝色"本征"发光与激基复合物的黄色发光构成了一个CIE坐标值为(0.27,0.33)(亮度100 cd/m2)的白光器件。器件最大外量子效率、最大功率效率和最大电流效率分别为44%、0.74 lm/W和1.04 cd/A。  相似文献   

6.
合成了一种新型的室温天蓝色磷光发射材料双(2-二苯基磷苯基)醚碘合铜(Ⅰ)([(POP)CuI]2)配合物。通过红外光谱、X-射线单晶衍射确定其分子结构,并对其光电特性进行了详细研究。结果表明:[(POP)CuI]2为二聚体结构,主要吸收峰为227,268,291 nm,最大发射峰为475 nm,光学带隙为2.93 eV。以[(POP)CuI]2作为客体掺杂在主体CBP中作为发光层,制备了结构为ITO/NPB(30 nm)/CBP∶[(POP)CuⅠ]2(30 nm,8%)/BAlq(10 nm)/Alq3 (30 nm)/LiF(1 nm)/Al(200 nm)的器件,其电致发光峰为476 nm,最大亮度为9 539 cd/m2,最大电流效率为1.9 cd/A。  相似文献   

7.
以铱配合物红色磷光体Ir(piq)2(acac)为掺杂剂,制备了基于BAlq材料的红色电致磷光器件,其结构为ITO/NPB(30nm)/Ir(piq)2(acac):BAlq(25nm)/BCP(13nm)/Alq3(35nm)/LiF(1nm)/Al(1000nm),当掺杂浓度为8%的时候,器件发光的色坐标为(x=0.67,y=0.32),基本满足了全色显示对红色发光的要求。在电压为16V时,器件达到最高亮度9380cd/m2。在电流密度为5.45mA/cm2时,外量子效率达到最大5.7%。由于磷光体Ir(piq)2(acac)的磷光寿命较短,所以器件在高电流密度下,仍然保持较高的外量子效率。电流密度为100mA/cm2时,外量子效率仍然维持在4.7%。进一步研究表明在器件中短程的Dexter能量传递以及红光染料对空穴的直接捕获两种机制同时存在。  相似文献   

8.
基于PVK∶NPB掺杂体系的有机电致发光器件的性能   总被引:4,自引:2,他引:2       下载免费PDF全文
利用溶液旋涂的方法,通过改变复合功能层中poly(N-vinylcarbazole)(PVK)和N,N′-bis-(1-naph-thyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine(NPB)的质量比,制备结构为indium-tin-oxide(ITO)/PVK:NPB/2,9-dimenthyl-4,7-diphenyl-1,10-phenanthroline(BCP)/Mg:Ag的有机电致发光器件,并对器件的电致发光特性进行了表征。研究结果表明,当复合功能层中PVK和NPB的质量比为1:1时器件性能最好,在该器件的电致光谱中,除了NPB的本征谱峰外,在长波方向还出现了一个位于640nm处的谱峰,这是PVK和NPB产生的电致激基复合物发光,并且随着驱动电压的增加,电致激基复合物的发光强度也相对增强。  相似文献   

9.
制备了三种结构的白色有机电致发光器件,通过比较得出:在发光层中间插入2,9-二甲基-4,7-二苯基-1,10-菲咯啉(BCP)能有效控制载流子在不同发光层的分布,进而对器件色度进行调节;而掺杂磷光染料Ir(ppy)3作敏化剂能有效提高器件的效率. 结构为:氧化铟锡/聚乙烯基咔唑∶N,N′-二(1-萘基)-N,N′-二苯基-1,1′-联苯-4-4′-二胺(30nm)/二-(2-甲基-8-羟基喹啉)-4-联苯酚铝:3.0 wt%2,5,8,11-tetra-tertbutylperylene(TBPe)(30nm)/BCP(5.0nm)/4,4N,N二咔唑基二苯:5.0 wt%Ir(ppy)3:2.0 wt%红荧烯(15nm)/BCP(10nm)/Mg:Ag的器件色度和效率俱佳. 其在17V工作电压下具有的亮度为4670cd/m2,对应色坐标为(0.31,0.37). 器件具有的最大外量子效率为1.4%,当驱动电压从5.0V升高到17V,器件色坐标严格位于白光色域区内. 关键词: 磷光染料 阻挡层 白光 双发光层  相似文献   

10.
双量子阱结构OLED效率和电流的磁效应   总被引:1,自引:0,他引:1       下载免费PDF全文
通过结构为ITO/NPB(60 nm)/ Alq3 ∶1 wt% rubrene(20 nm)/ Alq3(3 nm)/ Alq3 ∶1 wt% rubrene(20 nm)/ Alq3(20 nm)/LiF/Al的双量子阱的黄色有机电致发光器件,研究了不同磁场强度下的发光效率和电流变化特性. 研究结果表明该器件的电流是随着磁场强度的增加而单调下降的,显示了器件的电阻是随着磁场强度的增加而增加的. 同时也得到了该结构有 关键词: 量子阱 磁场 OLED 磁效应  相似文献   

11.
The electroplex between (2-(4-trifluoromethyl-2-hydroxyphenyl)benzothiazole) zinc [Zn(4-TfmBTZ)2] as an electron-acceptor and N,N′-diphenyl-N,N′-bis(1-naphthyl)-(1,1′-biphenyl)-4,4′-diamine (NPB) as an electron-donor was characterized by bilayer, blend, and multilayer quantum-well (MQW) device, respectively. The blend composition and quantum-well number are effective parameters for tuning electroluminescence color. White light with high color purity and color rendering index (CRI) was observed from these devices based on Zn(4-TfmBTZ)2/NPB. Moreover, the blend and MQW devices all exhibit high operation stability, hence excellent color stability. For the device with 5 mol% NPB in blend layer, its Commission International Del’Eclairage (CIE) coordinate region is x=0.28–0.31, y=0.33–0.35 and CRI is 83.3–91.2 at 5–9 V. For MQW structure device with NPB of 60 nm thickness, its CIE coordinate region is x=0.29–0.32, y=0.31–0.34 and CRI=87.9–92.5 at 10–15 V. Such high color stability and purity and CRI, being close to ideal white light, are of current important for white OLED.  相似文献   

12.
制备了一种结构为ITO/NPB/NPB:Ir(piq)2(acac)/CBP:TBPe/BAlq:rubrene/BAlq/Alq3/Mg:Ag的白色磷光有机电致发光器件.其中空穴传输型主体NPB掺杂磷光染料Ir(piq)2(acac)作为红色发光层,双载流子传输型主体4,4′-N,N′-dicarbazole-biphenyl (CBP)掺杂TBPe作为蓝色发光层,电子传输型主体材料BAlq掺杂rubrene作为绿色发光层.以上发光层夹于 关键词: 电致发光 磷光染料 异质结 白光  相似文献   

13.
Driving voltage of organic light-emitting diode (OLED) is lowered by employing molybdenum trioxide (MoO3)/N, N'-bis(naphthalene-1-yl)-N,N'-bis(phe-nyl)-benzidine (NPB) multiple quantum well (MQW) structure in hole transport layer. For the device with double quantum well (DQW) structure of ITO/ [MoO3 (2.5 nm)/NPB (20 nm)]2/Alq3(50 nm)/LiF (0.8 nm)/Al (120 nm)], the turn-on voltage is reduced to 2.8 V, which is lowered by 0.4 V compared with that of the control device (without MQW structures), the driving voltage is 5.6 V, which is reduced by 1 V compared with that of the control device at the 1000 cd/m2. In this work, the enhancement of the injection and transport ability for holes could reduce the driving voltage for the device with MQW structure, which is attributed not only to the reducing energy barrier between ITO and NPB, but also to the forming charge transfer complex between MoO3 and NPB induced by the interfacial doping effect of MoO3.  相似文献   

14.
《Current Applied Physics》2010,10(5):1326-1330
This paper describes the white organic light-emitting diodes (WOLEDs) made from a benzothiazole derivative, N-(4-(benzo[d]thiazol-2-yl)phenyl)-N-phenylnaphthalen-1-amine (BPNA). The bright yellowish-white emission was obtained from a non-doped triple-layer device: ITO/NPB (40 nm)/BPNA (50 nm)/Alq3 (40 nm)/LiF/Al. The Commission Internationale de L’Eclairage (CIE) coordinates of the device were (0.24, 0.36) at 10 V. The maximum brightness of the device was 9225 cd/m2 at 14.4 V. A current efficiency of 3.08 cd/A, a power efficiency of 1.21 lm/W and an external quantum efficiency of 1.18% at a driving current density of 20 mA/cm2 were achieved. WOLED with a DCJTB-doped structure of ITO/TcTa/BPNA/BPNA: DCJTB (0.5%)/BPNA/BCP/Alq3/LiF/Al was fabricated in comparison with the non-doped device. The device emitted bright white light with the CIE coordinates of (0.33, 0.29) at 10 V and a maximum luminance of 7723 cd/m2 at 14.8 V.  相似文献   

15.
Organic red emitting diode was fabricated by using 4-dicyanomethylene-2-methyl-6-[2-(2,3,6,7-tetrahydro-1 H,5H-benzo[ij]quinolizin-8-yl)vinyl]-4H-pyran (DCM)-doped tri-(8-quinolitolato) aluminum (Alq3) as emitter with the structure of G/ITO/NPB(25 nm)/DCM:Alq3(55 nm)/Alq3(20 nm)/LiF (1.2 nm)/Al(84 nm), (glass/indium–tin-oxide/4,4-bis-[N-(1-naphthyl)-N-phenyl-amino]biphenyl, G/ITO/NPB), the wavelength of the maximal emission of which is 615 nm. By introducing cavity to Organic light emitting diode (OLED), we got pure red emitting diode with wavelength of the maximal emission of 621 nm and full-width at half-maximum (FWHM) of 27 nm. As far as we know, it is the best result in the dye-doped organic red emitting diode. We also made a device of G/ITO/NPB(25 nm)/DCM:Alq3(29 nm)/DCM:PBD(26 nm)/Alq3(20 nm)/LiF(1.2 nm)/Al(84 nm), in order to compare the performance of Alq3 with that of 2-(4-biphenylyl)-5-(4-t-butylphenyl)-1,3,4-oxadiazole (PBD) as host material. It was found that the performance of device A is better than that of C both in brightness and color purity,as well as in EL efficiency.  相似文献   

16.
以磷光染料Ir(piq)2(acac)作为发光掺杂剂,掺入空穴传输性主体材料NPB中得到红色发光层,荧光材料TBP掺入到主体CBP中作为蓝色发光层,制备了结构为ITO/NPB/NPB:Ir(piq)2(acac)/CBP/CBP:TBPe/BCP/ALq/Mg:Ag的双发光层白色有机电致发光器件.其中ALq3、未掺杂的NPB和CBP及BCP层分别作为电子传输层、空穴传输层和激子阻挡层.实验中通过调节发光层厚度及Ir(piq)2关键词: 磷光 激子阻挡层 有机电致发光  相似文献   

17.
不同主体材料对红色磷光OLED器件性能的影响   总被引:6,自引:3,他引:3       下载免费PDF全文
制作了结构为ITO/2T-NATA (20 nm)/NPB(60 nm)/Zn(BTZ)2 : Ir(DBQ)2(acac) (80 nm)/Alq3(70 nm)/LiF(1 nm)/Al(200 nm)的红光器件,其中2T-NATA是4,4',4″-tris(N-(2-naphthyl)-N-phenyl-amino)-triphenylamine,NPB是N,N'-di(naphthalen-1-yl)-N,N'-diphenyl-benzidine, Zn(BTZ)2是Bis-(2-(2-hydroxyphenyl) benzothiazole)zinc,Ir(DBQ)2(acac)是iridium complex,Alq3 是tris(8-hydroxyquinolato)aluminum。基于Ir(DBQ)2(acac) 掺杂的Zn(BTZ)2体系的器件给出最高电致发光(EL)性能。结果显示:10%Ir(DBQ)2-(acac) 掺杂Zn(BTZ)2器件的亮度和效率分别为25 000 cd/m2和12 cd/A,其相应的EL峰位于620 nm,色坐标(x=0.63,y=0.37)。由于未使用激子阻挡层,所以,比通常磷光器件的制作工艺简单并且操作过程容易控制。  相似文献   

18.
White organic light-emitting devices (WOLEDs) were fabricated with an ultrathin layer of rubrene inserted between NPB and TPBI. With a simple three-layer structure of ITO/NPB(50 nm)/rubrene(0.1 nm)/TPBI(50 nm)/LiF/Al, a white light with CIE coordinates of (0.31, 0.30) were generated. The device gave a maximum luminance efficiency of 2.04 lm/W at 5 V. Furthermore, with a multilayer structure of ITO/m-MTDATA(30 nm)/NPB(20 nm)/rubrene(0.1 nm)/TPBI(40 nm)/Alq3(10 nm)/LiF/Al, the device reached a maximum luminance efficiency of 4.29 lm/W at 4 V and the luminance could exceed 10 000 cd/m2 at 10 V.  相似文献   

19.
制备了结构为ITO/NPB/CBP:TBPe:rubrene/BAlq:Ir(piq)2(acac)/BAlq/Alq3/Mg:Ag的白色磷光有机电致发光器件.利用两种不同的主体材料,即用双载流子传输型主体材料CBP掺杂荧光染料TBPe及rubrene作为蓝光和橙黄光发光层;用电子传输型主体材料BAlq掺杂磷光染料Ir(piq)2(acac)作为红色发光层.以上双发光层夹于空穴传输层NPB与具有电子传输性的阻挡层BALq之间.讨论了如何控制 关键词: 有机电致发光 磷光染料 掺杂 白光  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号