首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The emergence of solar cells on flexible and bendable substrates has made the printing process a ubiquitous tool for the fabrication of these devices. The various printing techniques available now such as inkjet, screen and flexography offer cost- effectiveness, user-friendliness and suitability for mass production. While downscaling the fill factor and efficiency of organic solar cells. A multilayered structure, the combination of different printing techniques avails the variety of thickness and resolution required for each layer in the production of an organic solar cell. In this review article, we discuss the suitability of the inkjet and screen printing processes to produce organic solar cells. We also discuss various challenges involved in the fabrication of organic solar cells using these two techniques and the possible solutions for the same. We also provide an analogy that both processes share. Further, we consider future possibilities of combining these printing technologies to produce organic solar cells to improve device performance.  相似文献   

2.
We report the use of conducting precision fabrics as transparent and flexible electrode for organic semiconductor‐based thin film devices. Precision fabrics have well‐defined mesh openings, excellent flexibility and are fabricated by high‐throughput roll‐to‐roll manufacturing. Optimized fabrics reached light transmittance over 95% throughout the visible and near infrared spectra. A significant part of the transmitted light is scattered, which is particularly advantageous for solar cell applications. Surface resistivity is as low as ~3 Ohms/square, which decreases Ohmic losses when scaling up to large area devices. We demonstrate that solar cells fabricated onto these electrodes show very similar characteristics to those prepared on ITO. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
张永晖  梅增霞  梁会力  杜小龙 《中国物理 B》2017,26(4):47307-047307
Flexible and transparent electronics enters into a new era of electronic technologies.Ubiquitous applications involve wearable electronics,biosensors,flexible transparent displays,radio-frequency identifications(RFIDs),etc.Zinc oxide(ZnO) and relevant materials are the most commonly used inorganic semiconductors in flexible and transparent devices,owing to their high electrical performances,together with low processing temperatures and good optical transparencies.In this paper,we review recent advances in flexible and transparent thin-film transistors(TFTs) based on ZnO and relevant materials.After a brief introduction,the main progress of the preparation of each component(substrate,electrodes,channel and dielectrics) is summarized and discussed.Then,the effect of mechanical bending on electrical performance is highlighted.Finally,we suggest the challenges and opportunities in future investigations.  相似文献   

4.
In both light emitting devices such as light emitting diodes (LEDs), and light absorbing devices such as solar cells (also photodetectors), which are gaining considerable interest for their energy saving and energy production capability, respectively, a compromise must be struck between the need to increase the light emitting/absorbing area/potential and the need for low series resistance of the metal contact grid. This undesirable compromise can be mitigated by using transparent conducting oxides (TCOs), which heretofore have been dominated by ITO (indium tin oxide—an In-rich alloy of indium oxide and tin oxide). Due to the expected scarcity of Indium used in ITO, efforts are underway to develop indium-free TCOs for the above-mentioned devices as well as flat panel displays. ZnO heavily doped with Ga or Al (GZO or AZO) is becoming a very attractive candidate for future generation TCOs. GZO and AZO as well as multilayer TCOs consisting of two TCO layers with a thin metal layer in between have been widely investigated for LEDs and solar cells to enhance device performance. This article succinctly reviews the latest developments in and properties of TCOs, particularly in relation to thin film transparent electrode applications for LEDs and solar cells. Pertinent critical issues and possible solutions are provided as well.  相似文献   

5.
In this work, we have presented a freestanding and flexible CNT-based film with sheet resistance of 60 ?/ and transmittance of 82% treated by nitric acid and chloroauric acid in sequence. Based on modified CNT film as a transparent electrode, we have demonstrated an ultrathin, flexible organic solar cell(OSC) fabricated on 2.5-μm PET substrate. The efficiency of OSC, combined with a composite film of poly(3-hexylthiophene)(P3HT) and phenyl-C61 butyric acid methyl ester(PCBM) as an active layer and with a thin layer of methanol soluble biuret inserted between the photoactive layer and the cathode, can be up to 2.74% which is approximate to that of the reference solar cell fabricated with ITO-coated glass(2.93%). Incorporating the as-fabricated ITO-free OSC with pre-stretched elastomer, 50% compressive deformation can apply to the solar cells. The results show that the as-prepared CNT-based hybrid film with outstanding electrical and optical properties could serve as a promising transparent electrode for low cost, flexible and stretchable OSCs, which will broaden the applications of OSC and generate more solar power than it now does.  相似文献   

6.
Transparent conductors (TCs) are materials, which are characterized by high transmission of light and simultaneously very high electrical DC conductivity. These materials play a crucial role, and made possible numerous applications in the fields of electro-optics, plasmonics, biosensing, medicine, and “green energy”. Modern applications, for example in the field of touchscreen and flexible displays, require that TCs are also mechanically strong and flexible. TC can be broadly classified into two categories: uniform and non-uniform TC. The uniform TC can be viewed as conventional metals (or electron plasmas) with plasma frequency located in the infrared frequency range (e.g. transparent conducting oxides), or ultra-thin metals with large plasma frequency (e.g. graphen). The physics of the nonuniform TC is much more complex, and could involve transmission enhancement due to refraction (including plasmonic), and exotic effects of electron transport, including percolation and fractal effects. This review ties the TC performance to the underlying physical phenomena. We begin with the theoretical basis for studying the various phenomena encountered in TC. Next, we consider the uniform TC, and discuss first the conventional conducting oxides (such as indium tin oxide), reviewing advantages and limitations of these classic uniform electron plasmas. Next, we discuss the potential of single- and multiple-layer graphene as uniform TC. In the part of the paper dealing with non-uniform metallic films, we begin with the review of random metallic networks. The transparency of these networks could be enhanced beyond the classical shading limit by the plasmonic refractive effects. The electrical conduction strongly depends on the network type, and we review first networks made of individual metallic nanowires, where conductivity depends on the inter-wire contact, and the percolation effects. Next, we review the uniform metallic film networks, which are free of the percolation effects and contact problems. In applications that require high-quality electric contact of a TC to an active substrate (such as LED or solar cells), the network performance can be optimized by employing a quasi-fractal structure of the network. We also consider the periodic metallic networks, where active plasmonic refraction leads to the phenomenon of the extraordinary optical transmission. We review the relevant literature on this topic, and demonstrate networks, which take advantage of this strategy (the bio-inspired leaf venation (LV) network, hybrid networks, etc.). Finally, we review “smart” TCs, with an added functionality, such as light interference, metamaterial effects, built-in semiconductors, and their junctions.  相似文献   

7.
Graphene oxide (GO), the functionalized graphene with oxygenated groups (mainly epoxy and hydroxyl), has attracted resurgent interests in the past decade owing to its large surface area, superior physical and chemical properties, and easy composition with other materials via surface functional groups. Usually, GO is used as an important raw material for mass production of graphene via reduction. However, under different conditions, the coverage, types, and arrangements of oxygen-containing groups in GO can be varied, which give rise to excellent and controllable physical properties, such as tunable electronic and mechanical properties depending closely on oxidation degree, suppressed thermal conductivity, optical transparency and fluorescence, and nonlinear optical properties. Based on these outstanding properties, many electronic, optical, optoelectronic, and thermoelectric devices with high performance can be achieved on the basis of GO. Here we present a comprehensive review on recent progress of GO, focusing on the atomic structures, fundamental physical properties, and related device applications, including transparent and flexible conductors, field-effect transistors, electrical and optical sensors, fluorescence quenchers, optical limiters and absorbers, surface enhanced Raman scattering detectors, solar cells, light-emitting diodes, and thermal rectifiers.  相似文献   

8.
张晓丹  郑新霞  许盛之  林泉  魏长春  孙建  耿新华  赵颖 《中国物理 B》2011,20(10):108801-108801
We report on the development of single chamber deposition of microcrystalline and micromorph tandem solar cells directly onto low-cost glass substrates. The cells have pin single-junction or pin/pin double-junction structures on glass substrates coated with a transparent conductive oxide layer such as SnO2 or ZnO. By controlling boron and phosphorus contaminations, a single-junction microcrystalline silicon cell with a conversion efficiency of 7.47% is achieved with an i-layer thickness of 1.2 μm. In tandem devices, by thickness optimization of the microcrystalline silicon bottom solar cell, we obtained an initial conversion efficiency of 9.91% with an aluminum (Al) back reflector without a dielectric layer. In order to enhance the performance of the tandem solar cells, an improved light trapping structure with a ZnO/Al back reflector is used. As a result, a tandem solar cell with 11.04% of initial conversion efficiency has been obtained.  相似文献   

9.
In this review, we present our recent work on making structured metals transparent for broadband electromagnetic waves and acoustic waves via excitation of surface waves. First, we theoretically show that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic waves by relying on surface plasmons or spoof surface plasmons. Second, we experimentally demonstrate that metallic gratings with narrow slits are highly transparent for broadband terahertz waves at oblique incidence and high transmission efficiency is insensitive to the metal thickness. Further, we significantly develop oblique metal gratings transparent for broadband electromagnetic waves (including optical waves and terahertz ones) under normal incidence. In the third, we find the principles of broadband transparency for structured metals can be extended from one-dimensional metallic gratings to two-dimensional cases. Moreover, similar phenomena are found in sonic artificially metallic structures, which present the transparency for broadband acoustic waves. These investigations provide guidelines to develop many novel materials and devices, such as transparent conducting panels, antireflective solar cells, and other broadband metamaterials and stealth technologies.  相似文献   

10.
We present a precise and flexible method to investigate the impact of diverse detached reflector designs on the optical response of p–i–n thin‐film silicon solar cells. In this study, the term detached reflectors refers to back reflectors that are separated from the silicon layers by an intermediate rear dielectric of several micrometers. Based on the utilization of a highly conductive n‐doped layer and a local electrical contact scheme, the method allows the use of non‐conductive rear dielectrics such as air or transparent liquids. With this approach, diverse combinations of back reflector and rear dielectric can be placed behind the same solar cell, providing a direct evaluation of their impact on the device performance. We demonstrate the positive effect of a rear dielectric of low refractive index on the light trapping and compare the performance of solar cells with an air/Ag and a standard ZnO/Ag back reflector design. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The performances of organic optoelectronic devices, such as organic light emitting diodes and polymer solar cells,have rapidly improved in the past decade. The stability of an organic optoelectronic device has become a key problem for further development. In this paper, we report one simple encapsulation method for organic optoelectronic devices with a parafilm, based on ternary polymer solar cells(PSCs). The power conversion efficiencies(PCE) of PSCs with and without encapsulation decrease from 2.93% to 2.17% and from 2.87% to 1.16% after 168-hours of degradation under an ambient environment, respectively. The stability of PSCs could be enhanced by encapsulation with a parafilm. The encapsulation method is a competitive choice for organic optoelectronic devices, owing to its low cost and compatibility with flexible devices.  相似文献   

12.
蒋树刚  魏岳  刘海旭  路万兵  于威 《发光学报》2018,39(12):1687-1696
柔性太阳电池具有重量轻、可卷对卷连续生产、可卷曲、不易破碎、便于携带和可穿戴等特点,可在多种领域为人们提供电力,具有非常广泛的应用前景。近年来,在基于刚性衬底的有机/无机杂化钙钛矿太阳电池(PSC)展示了出色的功率转换效率之后,柔性PSC研究也受到了人们的广泛关注。目前,柔性PSC的转换效率已经达到了18.1%。本文介绍了近年来柔性PSC领域的相关研究工作,综述了已应用于柔性PSC的柔性基底、透明电极和界面传输层等关键材料近来的发展,并探讨了这些材料应用于柔性PSC时的优势和面临的主要问题,最后对柔性PSC未来的发展进行了展望。  相似文献   

13.
金属卤化物钙钛矿广泛应用于太阳能电池、发光二极管和纳米激光器等领域,引起了科学家们极大的兴趣.纳米材料由于具有量子约束和较强的各项异性,表现出与普通块体材料不同的光学和电学性质.金属卤化物钙钛矿纳米材料具有可调节带隙、高量子效率、强的光致发光、量子约束效应和长的载流子寿命等优点,并且其成本低、储量丰富、易于合成多种化合物,有很广阔的光电应用前景.但另一方面,钙钛矿由于表面存在陷阱缺陷状态以及晶体边界导致稳定性较差,环境中的水、氧气、紫外线和温度等因素会使其光电性能大幅度降低.本文介绍量子点、纳米线、纳米片钙钛矿纳米材料的合成与生长机制,并且讨论其新奇的光电性能及在各种光电设备中的应用.最后总结了钙钛矿材料新出现的挑战并讨论了下一代金属卤化物钙钛矿光电设备应用.  相似文献   

14.
Enhancing optical and electrical performances is effective in improving power conversion efficiency of photovoltaic devices. Here, gold and silver dual nanoparticles were imported and embedded in the hole transport layer of perovskite solar cells. Due to the cooperative localized surface plasmon resonance of these two kinds of metal nanostructures, light harvest of perovskite material layer and the electrical performance of device were improved, which finally upgraded short circuit current density by 10.0%, and helped to increase power conversion efficiency from 10.4% to 11.6% under AM 1.5G illumination with intensity of 100 m W/cm~2. In addition, we explored the influence of silver and gold nanoparticles on charge carrier generation, dissociation, recombination, and transportation inside perovskite solar cells.  相似文献   

15.
Solar energy is one of the renewable energy resources that can be changed to the electrical energy with photovoltaic cells. This article accomplishes a comprehensive review on the emersion, underlying principles, types and performance improvements of these cells. Although there are some different categorizations about the solar cells, but in general, all of them can be divided to crystalline silicon solar cells, thin film technology, III–V multijunction cells, dye-sensitized solar cells, polymer solar cells and quantum structured solar cells. Thin film technology is investigated in two non-crystalline silicon solar cells and chalcogenide cells. We present a complete categorization of solar cells and discuss the recent developments of different types of solar cells. Indeed, this paper covers almost all of the development processes of solar cells from their emersion in 1939 up to now. Also, due to substantial effects of the light trapping techniques on the improvements of the solar cells, a comprehensive study has been carried out.  相似文献   

16.
肖友鹏  王涛  魏秀琴  周浪 《物理学报》2017,66(10):108801-108801
硅异质结太阳电池是一种由非晶硅薄膜层沉积于晶硅吸收层构成的高效低成本的光伏器件,是一种具有大面积规模化生产潜力的光伏产品.异质结界面钝化品质、发射极的掺杂浓度和厚度以及透明导电层的功函数是影响硅异质结太阳电池性能的主要因素.针对这些影响因素已经有大量的研究工作在全世界范围内展开,并且有诸多研究小组提出了器件效率限制因素背后的物理机制.洞悉物理机制可为今后优化设计高性能的器件提供准则.因此及时总结硅异质结太阳电池的物理机制和优化设计非常必要.本文主要讨论了晶硅表面钝化、发射极掺杂层和透明导电层之间的功函数失配以及由此形成的肖特基势垒;讨论了屏蔽由功函数失配引起的能带弯曲所需的特征长度,即屏蔽长度;介绍了硅异质结太阳电池优化设计的数值模拟和实践;总结了硅异质结太阳电池的研究现状和发展前景.  相似文献   

17.
Silicon photonics is no longer an emerging field of research and technology but a present reality with commercial products available on the market, where low‐dimensional silicon (nanosilicon or nano‐Si) can play a fundamental role. After a brief history of the field, the optical properties of silicon reduced to nanometric dimensions are introduced. The use of nano‐Si, in the form of Si nanocrystals, in the main building blocks of silicon photonics (waveguides, modulators, sources and detectors) is reviewed and discussed. Recent advances of nano‐Si devices such as waveguides, optical resonators (linear, rings, and disks) are treated. Emphasis is placed on the visible optical gain properties of nano‐Si and to the sensitization effect on Er ions to achieve infrared light amplification. The possibility of electrical injection in light‐emitting diodes is presented as well as the recent attempts to exploit nano‐Si for solar cells. In addition, nonlinear optical effects that will enable fast all‐optical switches are described.  相似文献   

18.
Localized surface plasmons on metallic nanoparticles can be surprisingly efficient at coupling light into or out of a silicon waveguide. In this paper we review our recent work where we have demonstrated a factor of 8 times enhancement in the electroluminescence from a silicon-on-insulator light-emitting diode at 900 nm using silver nanoparticles, in the first report of a surface plasmon-enhanced silicon light-emitting diode. Our theoretical work has shown that the enhancement seen in this system at long wavelengths is mainly a single-particle effect, in contrast to previous suggestions that it is a waveguide-mediated multi-particle effect, and that there is a dramatic enhancement of the scattering cross-section for waveguided light in these devices. We discuss the route towards increasing this enhancement further and provide predictions of the limits on the maximum potential efficiency enhancement, as well as the potential of metal particles for applications in thin film silicon solar cells.  相似文献   

19.
We present a nanoimprint based approach to achieve efficient light management for solar cells on low temperature transparent polymer films. These films are particularly low‐priced, though sensitive to temperature, and therefore limiting the range of deposition temperatures of subsequent solar cell layers. By using nanoimprint technology, we successfully replicated optimized light trapping textures of etched high temperature ZnO:Al on a low temperature PET film without deterioration of optical properties of the substrate. The imprint‐textured PET substrates show excellent light scattering properties and lead to significantly improved incoupling and trapping of light in the solar cell, resulting in a current density of 12.9 mA/cm2, similar to that on a glass substrate. An overall efficiency of 6.9% was achieved for a flexible thin‐film silicon solar cell on low cost PET substrate. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

20.
A wrinkle-based thin-film device can be used to develop optoelectronic devices, photovoltaics, and strain sensors. Here, we propose a stable and ultrasensitive strain sensor based on two-dimensional (2D) semiconducting gallium selenide (GaSe) for the first time. The response of the electrical resistance to strain was demonstrated to be very sensitive for the GaSe-based strain sensor, and it reached a gauge factor of –4.3, which is better than that of graphene-based strain sensors. The results show us that strain engineering on a nanoscale can be used not only in strain sensors but also for a wide range of applications, such as flexible field-effect transistors, stretchable electrodes, and flexible solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号