首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report a study on the SHI induced modifications on structural and optical properties of ZnO/PMMA nanocomposite films. The ZnO nanoparticles were synthesized by the chemical route using 2-mercaptoethanol as a capping agent. The structure of ZnO nanoparticles was confirmed by XRD, SEM and TEM. These ZnO nanoparticles were dispersed in the PMMA matrix to form ZnO/PMMA nanocomposite films by the solution cast method. These ZnO/PMMA nanocomposite films were then irradiated by swift heavy ion irradiation (Ni8+ ion beam, 100 MeV) at a fluence of 1×1011 ions/cm2. The nanocomposite films were then characterized by XRD, UV-vis absorption spectroscopy and photoluminescence spectroscopy. As revealed from the absorption spectra, absorption edge is not changed by the irradiation but the optical absorption is increased. Enhanced green luminescence at about 527 nm and a less intense blue emission peak around 460 nm were observed after irradiation with respect to the pristine ZnO/PMMA nanocomposite film.  相似文献   

2.
ABSTRACT

For a comprehensive understanding of the PVA/CdS nanocomposite properties, it is essential to select the suitable method for their preparation as well as elucidate the interfacial interactions, which still need support. CdS nanoparticles have been prepared by thermolysis method under the flow of nitrogen. Rietveld refinement of x-ray data shows that all the CdS samples have both cubic and hexagonal structures. Then PVA/CdS films were prepared by ex-situ technique. Samples from PVA/CdS nanocomposite have been irradiated with gamma doses in the range 10–120?kGy. The implanting of CdS NPs into PVA matrix was confirmed by XRD hand in hand with UV–vis and FTIR spectroscopic techniques. UV/VIS absorption spectra confirm the formation of hybridized film CdS/PVA nanocomposite with a refractive index in the range of 1.32–1.48 (at 500?nm). UV/VIS measurements were also used in calculating different optical parameters such as refractive index, extinction coefficient and optical band gap energy. Additionally, Tauc’s relation was used to determine the type of electronic transition. It is found that the gamma irradiation in the dose range 30-90?kGy led to a more compact structure of PVA/CdS nanocomposite and causes proper dispersion of CdS nanoparticles in the PVA matrix. This led to the formation of coordination reaction between OH of PVA and CdS nanoparticles, resulted in an increase in refractive index and the amorphous phase. Also, the gamma irradiation reduces the optical energy gap from 4.53 to 2.19?eV, and accompanied with an increase in the Urbach energy from 2.28 to 4.46?eV, at that dose range which could be attributed to the increase in structural disorder of the irradiated PVA/CdS nanocomposites due to crosslinking. Further, the color intensity ΔE, which is the color difference between the non-irradiated sample and the irradiated ones, was increased, from 0 to 10.8, with increasing the gamma dose, convoyed by an increase in the red and yellow color components.  相似文献   

3.
Nanocomposites of ZnSe nanoparticles embedded in polyvinyl alcohol (PVA) matrix have been prepared by in-situ synthesis. ZnSe/PVA nanocomposites are characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and UV/Vis spectra. The nanocomposite structure is confirmed by the blue-shift of the absorption edge. The nonlinear refractive index and two-photon absorption (TPA) coefficient are measured by the Z-scan technique using low power CW He–Ne laser light. The results show that the ZnSe nanocomposite films show large optical nonlinearity and the magnitude of the third-order nonlinear susceptibility χ(3) is calculated to be 2.62×13?11 m2/V2.  相似文献   

4.
《Composite Interfaces》2013,20(2-3):103-111
Semiconductor–polymer nanocomposites, with good control over the nanoparticle size and their dispersion within the polymer matrix, can have applications in many optical and luminescent display devices. Cadmium sulphide (CdS) is the most popular semiconductor nanoparticle exhibiting size dependent properties due to its large exciton binding energy and its suitability for large scale production. The nanoparticles need to be passivated against aggregation with suitable capping agents, without sacrificing the desirable properties like transparency and flexibility of the polymer. Cadmium sulphide nanoparticles capped with polyvinyl pyrrolidone (PVP) are synthesized using cadmium nitrate (Cd(NO3)2) and hydrogen sulphide (H2S) as Cd2+ and S2– sources, respectively. CdS particles with sizes in the range of 5–6 nm are prepared in methanol and the solvent is removed using a rotary evaporator. CdS powder is dispersed in polyvinyl alcohol (PVA) solution with dimethyl formamide (DMF) as solvent to get (PVP–CdS)–PVA nanocomposite film of about 0.2 mm thickness. This has been characterized by powder X-ray diffraction (XRD), optical absorption studies, transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and photoluminescence (PL). Particle size does not change due to incorporation in the polymer matrix and the polymer retains its transparency and flexibility. The nanocomposite shows good photoluminescence property with stronger band edge emission than defect related emission. The latter could be quenched completely by optimizing the PVP content. Irradiation of the nanocomposite with 8 MeV electrons at a dose of 100 kGy could effectively quench the defect related emission.  相似文献   

5.
A simple method for synthesis of well dispersed cadmium sulphide nanoparticles embedded in a polyethylene glycol matrix (PEG 400) in thin film form is presented. The large blue shift of the band gap energy of the CdS nanoparticles compared to the bulk semiconductors is observed via UV-vis absorption spectra. Photoluminescence spectra of CdS nanocomposite films show that the emission peaks shift towards the longer wavelength with the increase of annealing temperature. Transmission electron microscopic images as well as Raman scattering studies confirm the CdS nanometer size particle formation within the polymer matrix. The particle size is about 8 nm. Selected area electron diffraction (SAED) shows the cubic zinc blende polycrystalline rings. Third-order optical nonlinearity of the CdS nanopartieles embedded in polymer thin films is studied with the Z-scan technique under 1064 nm excitation. The results show that the CdS nanocomposite film exhibits negative nonlinear refraction index and positive absorption coefficient. The film shows large optical nonlinearity, and the magnitude of the third-order nonlinear susceptibility of the film is calculated to be 1.73 × 10^-9 esu. The corresponding mechanism is discussed.  相似文献   

6.
Polypyrrole-polyvinyl alcohol (PPy-PVA) nanocomposite is synthesized by dispersing interface polymerized polypyrrole in PVA matrix. The composite films are characterized by FTIR, XRD and SEM. FTIR spectra indicates crosslinking in the composite film. XRD pictures show more crystallinity for higher polymerization temperature, whereas SEM pictures clearly indicate PPy rod formation for the same film. The electrical conductivity of the films is in the range of 10−1 S/cm, whereas the current-voltage (I–V) characteristics shows power law behaviour.  相似文献   

7.
Monodispersed Mn2+ doped CdS nanoparticles with average size as small as 1.8 nm have been synthesized through chemical method. The nanostructures of the prepared nanoparticles have been confirmed through X-ray diffraction (XRD), ultraviolet-visible (UV-vis) absorption and transmission electron microscope (TEM) measurements. The photoluminescence emission covering 450-650 nm of the visible region is observed under ultraviolet light excitation, from Mn2+ doped CdS nanoparticles dispersed in dimethyl sulfoxide (DMSO).  相似文献   

8.
We investigated the influence of lithium potassium zirconate (LiKZrO3) nanoparticles on the electrical properties and structural characteristics of poly(vinyl alcohol) (PVA) films. PVA/LiKZrO3 nanocomposite films were prepared by casting of aqueous solutions with varying LiKZrO3 content (0.5, 1.0, and 2.0 wt.%). The dielectric constant (ε′), dielectric loss (ε″), AC conductivity (σac), dielectric loss tangent (tan δ), and electric modulus (M′ and M″) of the nanocomposite films were measured over a range of frequencies at ambient temperature. The results show increases in σac and M′ with frequency, whereas ε′, ε″, and tan δ decreased with increasing frequency. The films were also characterized using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and X-ray diffraction (XRD) techniques. DSC and XRD revealed the nature of LiKZrO3 nanoparticle interaction with the PVA matrix. TGA analysis revealed an increase in thermal stability of the nanocomposites with increasing nanoparticle concentration. Scanning electron microscopy confirmed uniform dispersion of LiKZrO3 nanoparticles in the PVA matrix.  相似文献   

9.
Citrate-stabilized CdS nanoparticles of size 4 nm are obtained by varying the sulfide:citrate ion concentration in a simple aqueous synthesis method. The optical absorption and photoluminescence properties of the nanoparticles are studied. The size of the crystallites is found to be less affected by sulfide:citrate ratio. At lower concentrations of S2−, trap state emission is favoured and at higher concentrations excitonic transition is predominant as shown by optical absorption and photoluminescence spectra. Effective surface capping and optimum concentration of S2− leads to the quenching of surface-defect-related emission. Increase in citrate ion concentration is found to increase the intensity of photoluminescence band arising from trap state emission revealing the role of sulfide:citrate ratio on surface modification of CdS nanocrystals. The nanoparticles are hexagonal as shown by the X-ray diffraction and selected area electron diffraction pattern.  相似文献   

10.
Undoped and Cr (2 and 4 at.%) doped CdS nanoparticles were synthesized in aqueous solution by simple chemical co-precipitation method using polyvinylpyrrolidone (PVP) as stabilizer. The prepared nanoparticles were examined using X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDAX), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy (DRS) and Fourier transform infrared spectroscopy (FTIR). XRD pattern of the nanoparticles showed cubic zincblende phase with the particle size of the order of 3-4 nm, which was in good agreement with the results obtained from TEM studies. The EDAX analysis confirmed that Cd, Cr and S elements were present in the samples and the variations between the target and actual compositions were microscopic. UV-vis DRS spectra of the samples exhibited decrease in the band gap which further attests the incorporation of Cr into CdS nanoparticles. FTIR studies revealed that the undoped as well as Cr doped CdS nanoparticles were capped by polyvinylpyrrolidone.  相似文献   

11.
Polyimide (PI)/titanium dioxide (TiO2) nanocomposite films were prepared by a solution mixing method with different contents of TiO2 nanoparticles. The structural and thermal properties of pure PI and PI/TiO2 nanocomposite films were studied by several techniques such as scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermally stimulated depolarization current (TSDC). The SEM and AFM measurements show the uniform dispersion of TiO2 nanoparticles in PI matrix, and it is also observed that the value of average roughness increases with increasing the contents of TiO2 nanoparticles. The XRD pattern shows the presence of TiO2 nanoparticles in PI matrix. It has been observed that the average crystallite size and percentage of crystallinity increase with content of the TiO2 nanoparticles. FTIR spectra depict the position of different bonds in PI and nanocomposite samples. The TSDC results represent the modification of polarization phenomenon after filling of PI by titania nanoparticles.  相似文献   

12.
Photoluminescent, structural and thermal changes induced in polyvinylidenechloride (PVDC) films by irradiation with energetic silicon and oxygen ions have been determined using different techniques viz PL, FTIR, UV-vis, XRD, TGA and AFM. Noticeable photoluminescence was observed in PVDC after irradiation with 84 MeV oxygen ions at fluence 3.2×1011 ions cm−2, which is attributed to the small carbon cluster formed in the polymer due to irradiation. Quenching and shifting in the position of the PL band towards the longer wavelength side of the spectrum was observed with the increase in ion fluence. UV-vis and FTIR analysis have strongly corroborated the results of PL spectroscopy. X-ray diffractograms and TGA curves show decrease in crystallinity and weight loss, respectively, of PVDC films after irradiation. The strong correlation between the behaviors of different properties were analyzed and discussed in the present paper.  相似文献   

13.
CdS nanocrystals were prepared by a simple one-step aqueous synthesis method using thioglycolic acid (TGA) as the capping molecule, and characterized by X-ray powder diffraction (XRD), UV-vis absorption spectra and photoluminescence (PL) emission spectroscopy. The effects of both TGA/Cd and Cd/S molar ratio on the surface-defect-state PL intensity of CdS nanocrystals have been investigated. It was found that all of the as-prepared CdS nanocrystals showed a strong broad emission in the range of 450-700 nm centered at 560 nm, which was attributed to the recombination of an electron trapped in a sulfur vacancy with a hole in the valance band of CdS. The surface-defect-states emission intensity of CdS nanocrystals significantly increased with the increase of Cd/S molar ratio, and showed a maximum when Cd/S molar ratio was 2.0. If Cd/S molar ratio continued to increase, namely more than 2.0, the surface-defect-states emission intensity would decrease. It was found that the surface-defect-states emission intensity increased with the increase the TGA/Cd molar ratio, and showed a maximum when the TGA/Cd molar ratio was equal to 1.8, and a further increase of the TGA/Cd molar ratio would lead to the decrease of the surface-defect-states emission intensity.  相似文献   

14.
In order to efficiently use the visible light in the photocatalytic reaction, a novel bamboo-like CdS/TiO2 nanotubes composite was prepared by a facile chemical reduction method, in which CdS nanoparticles located in the TiO2 nanotubes. The composition and structure of this nanocomposite were characterized by TEM, HRTEM, XRD, XPS, FTIR and UV-vis spectroscopy. This CdS/TiO2 nanotubes composite exhibited much higher visible-light photocatalytic activity for the degradation of methylene blue than pure TiO2 nanotubes and CdS nanoparticles, and the highest photodegradation efficiency after 6 h irradiation can reach 84.5%. It is inferred that the unique structure of CdS/TiO2 nanotubes composites acts an important role for the improvement of their photocatalytic activity.  相似文献   

15.
In this paper, we report synthesis and study of magneto-optic Faraday effect for dilute magnetic semiconductor nanostructure. The colloidal CdS nanocrystals were prepared via hot injection method and successfully doped with Mn2+ cations. The synthesized nanoparticles were characterized by using UV–Vis spectroscopy, X-ray diffraction, photoluminescence spectroscopy, transmission electron microscopy, and electron spin resonance spectroscopy. Systematic studies on effect of Mn2+ doping on photoluminescence, electron spin resonance, and magneto-optical properties are carried out. UV–Vis spectral analysis confirms blue shift in bandgap of CdS nanoparticles due to quantum confinement effect. The X-ray diffraction study confirms hexagonal wurtzite phase formation of CdS nanoparticles without any impurity phases. TEM analysis confirms uniform particle size, having particle size distribution around 5 nm. As-synthesized undoped CdS shows triangular-shaped nanocrystals with hexagonal structure; however, triangular shape of CdS nanoparticles is not conserved after Mn2+ doping. The photoluminescence characteristic spectra of Mn2+-doped CdS nanocrystals showed emission band at 660 nm and its intensity was found to increase with increasing Mn2+ concentration. Electron spin resonance signal, with six-line hyperfine structure splitting, confirmed doping of Mn2+ ions in CdS lattice. Magneto-optic measurements showed linear variation of Faraday rotation with respect to applied magnetic field, indicating paramagnetic behavior of Mn-doped CdS. The highest Verdet constant 24.81 deg/T cm was observed for 2% Mn-doped CdS nanocrystals, which further decreases with increasing Mn2+ concentration.
Graphical abstract Illustration of Magneto-optic Faraday effect using dilute magnetic semiconductors (TEM image of triangular CdS nanoparticles)
  相似文献   

16.
Multilayer films of CdS particles and meso-tetra-(4-trimethylaminophenyl)porphyrin cobalt iodide (CoTAPPI) were fabricated via layer-by-layer self-assembly technique. UV-vis absorption spectra, fluorescence spectra and SEM images were used to compare the differences between the films prepared from freshly synthesized nanoparticles and from aged particles. SEM images show the aged CdS particles and CoTAPPI in the multilayer film, assembling in a linear structure. The mechanism of dipole-dipole interaction was presented to explain linear formation.  相似文献   

17.
In this paper, ultrasonic irradiation was applied for the synthesis of K2Ti6O13 nanobelts and novel nanocomposite (PbS–CdS/Ti6O13) through ion exchanging and co-intercalation processes. Thirty minutes of ultrasonic irradiation caused the formation of pure, uniform potassium hexatitanate with smaller particle size. The incorporation of PbS and CdS nanoparticles into the layers and on the surface of titanate in the presence of ultrasound was done directly, without pre-treatment process and led to the preparation of new nanocomposite. The physicochemical properties of the layered K2Ti6O13 and PbS–CdS/Ti6O13 nanocomposite were analyzed by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), ultraviolet–visible spectra (UV–vis), Fourier transform infrared spectroscopy (FTIR) and photoluminescence technique (PL). The results showed that the PbS–CdS/Ti6O13 possessed a higher interlayer spacing than that of K2Ti6O13, which indicated the formation of an intercalated nanomaterial. Besides that the absorption edge of titanate shifted to the visible light region owing to the incorporation of semiconductor guest molecules. These characteristics make these nanocomposites promising for use as photocatalysts. Besides that, other samples were synthesized by stirring method at the same conditions and their characteristics were compared with sono-synthesized samples.  相似文献   

18.
Sm3+ doped CdS nanoparticles have been prepared by sol-gel method. The effect of annealing temperatures and doping concentrations of CdS on the photoluminescence spectra of Sm3+ were studied. From the measurement of its optical absorption, three phenomenological Judd-Ofelt intensity parameters (Ω2, Ω4, and Ω6) have been computed and used to parameterize the radiative properties. The influences of CdS on Sm3+ ions were studied by fluorescence spectroscopy. The fluorescence spectra revealed that the emission intensity of samarium increased considerably in the presence of CdS nanoparticles. The evaluation of radiative properties of Sm3+ containing CdS showed that the 4G5/26H7/2 transition in silica matrix had the potential to be a laser transition.  相似文献   

19.
Composites of CdS nanoparticles confined in a polystyrene-co-maleic acid (PS-co-MAc) matrix have been prepared and characterized. It was shown that the acid groups of the co-polymer could be successfully used to control the aggregation of the nanoparticles, because they act as coordinate sites for Cd ions. UV-VIS measurements showed a blue shift of the absorption threshold, proving the presence of nanoparticles. An average size of the nanoparticles of about 4 nm is estimated from the change in band gap energy. Although the FTIR spectrum of the nanocomposite showed the presence of C-S bonds, a broad emission originating from surface recombination sites are noticed. DSC and TGA measurements revealed changes in thermal properties upon incorporation of nanoparticles. No thermal transition was observed in the nanocomposite, while the pure co-polymer exhibits a glass transition at 190 °C. In the presence of nanoparticles the onset of the thermal decomposition of the matrix is also shifted by 50 °C towards a higher temperature.  相似文献   

20.
In the present paper photoelectrochemical (PEC) performance of bath deposited CdS thin films based on complexing agents i.e. ammonia and triethanolamine (TEA) has been discussed. Effect of annealing has also been analyzed. The as-deposited and annealed (at 523 K for 1 h in air) films were characterized by X-ray diffraction (XRD), ultraviolet-visible (UV-vis) absorption spectroscopy, SEM, electrochemical impedance spectroscopy (EIS), and PEC properties. XRD studies revealed that the films were nanocrystalline in nature with mixed hexagonal and cubic phases. TEA complex resulted in better crystallinity. Further improvement in the crystallinity of the films was observed after air annealing. The marigold flower-like structure, in addition to flakes morphology, was observed with TEA complex, whereas for ammonia complex only flakes morphology was observed. The UV-vis absorption studies revealed that the optical absorption edge for the films with ammonia and TEA complex was around 475 nm and 500 nm, respectively. Annealing of the films resulted in red shift in the UV-vis absorption. The PEC cell performance of CdS films was found to be strongly affected by crystallinity and morphology of the films resulted due to complexing agent and annealing. The air annealed film deposited using TEA complex showed maximum short circuit current density (Jsc) and open circuit voltage (Voc) i.e. 99 μA/cm2 and 376 mV respectively, under 10 mW/cm2 of illumination. The films deposited using TEA complex showed good stability under PEC cell conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号