首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 229 毫秒
1.
Synthesis and photoluminescence characteristics of doped ZnS nanoparticles   总被引:3,自引:0,他引:3  
Free-standing powders of doped ZnS nanoparticles have been synthesized by using a chemical co-precipitation of Zn2+, Mn2+, Cu2+ and Cd2+ with sulfur ions in aqueous solution. X-ray diffraction analysis shows that the diameter of the particles is ∼2–3 nm. The unique luminescence properties, such as the strength (its intensity is about 12 times that of ZnS nanoparticles) and stability of the visible-light emission, were observed from ZnS nanoparticles co-doped with Cu2+ and Mn2+. The nanoparticles could be doped with copper and manganese during the synthesis without altering the X-ray diffraction pattern. However, doping shifts the luminescence to 520–540 nm in the case of co-doping with Cu2+ and Mn2+. Doping also results in a blue shift on the excitation wavelength. In Cd2+-doped ZnS nanometer-scale particles, the fluorescence spectra show a red shift in the emission wavelength (ranging from 450 nm to 620 nm). Also a relatively broad emission (ranging from blue to yellow) has been observed. The results strongly suggest that doped ZnS nanocrystals, especially two kinds of transition metal-activated ZnS nanoparticles, form a new class of luminescent materials. Received: 16 October 2000 / Accepted: 17 October 2000 / Published online: 23 May 2001  相似文献   

2.
CdS:Mn2+/ZnS and CdS:Mn2+/CdS core–shell nanoparticles were synthesized in aqueous medium via chemical precipitation method in an ambient atmosphere. Polyvinylpyrrolidone (PVP) was used as a capping agent. The effect of the shell (ZnS and CdS) thickness on CdS:Mn2+ nanoparticles was investigated. Inorganically passivated core/shell nanocrystals having a core (CdS:Mn2+) diameter of 4 nm and a ZnS-shell thickness of ∼0.5 nm exhibited improved PL intensity. Optimum concentration of doping ions (Mn2+) was selected through optical study. For all the core–shell samples two emission peaks were observed, the first one is band edge emission in the lower wavelength side due to energy transfer to the Mn2+ ions in the crystal lattice; the second emission is characteristic peak of Mn2+ ions (4T1 → 6A1). The XRD, TEM and PL results showed that the synthesized core–shell particles were of high quality and monodisperse.  相似文献   

3.
In this paper, we report synthesis and study of magneto-optic Faraday effect for dilute magnetic semiconductor nanostructure. The colloidal CdS nanocrystals were prepared via hot injection method and successfully doped with Mn2+ cations. The synthesized nanoparticles were characterized by using UV–Vis spectroscopy, X-ray diffraction, photoluminescence spectroscopy, transmission electron microscopy, and electron spin resonance spectroscopy. Systematic studies on effect of Mn2+ doping on photoluminescence, electron spin resonance, and magneto-optical properties are carried out. UV–Vis spectral analysis confirms blue shift in bandgap of CdS nanoparticles due to quantum confinement effect. The X-ray diffraction study confirms hexagonal wurtzite phase formation of CdS nanoparticles without any impurity phases. TEM analysis confirms uniform particle size, having particle size distribution around 5 nm. As-synthesized undoped CdS shows triangular-shaped nanocrystals with hexagonal structure; however, triangular shape of CdS nanoparticles is not conserved after Mn2+ doping. The photoluminescence characteristic spectra of Mn2+-doped CdS nanocrystals showed emission band at 660 nm and its intensity was found to increase with increasing Mn2+ concentration. Electron spin resonance signal, with six-line hyperfine structure splitting, confirmed doping of Mn2+ ions in CdS lattice. Magneto-optic measurements showed linear variation of Faraday rotation with respect to applied magnetic field, indicating paramagnetic behavior of Mn-doped CdS. The highest Verdet constant 24.81 deg/T cm was observed for 2% Mn-doped CdS nanocrystals, which further decreases with increasing Mn2+ concentration.
Graphical abstract Illustration of Magneto-optic Faraday effect using dilute magnetic semiconductors (TEM image of triangular CdS nanoparticles)
  相似文献   

4.
ZnS nanoparticles with Mn2+ doping (0.5-20%) have been prepared through a simple chemical method, namely the chemical precipitation method. The structure of the nanoparticles has been analyzed using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and UV-vis spectrometer. The size of the particles is found to be 3-5 nm range. Photoluminescence spectra were recorded for undoped ZnS nanoparticles using an excitation wavelength of 320 nm, exhibiting an emission peak centered at around 445 nm. However, from the Mn2+-doped samples, a yellow-orange emission from the Mn2+4T1-6A1 transition is observed along with the blue emission. The prepared Mn2+-doped sample shows efficient emission of yellow-orange light with the peak emission 580 nm with the blue emission suppressed. The maximum PL intensity is observed only at the excitation energy of 3.88 eV (320 nm). Increase in stabilizing time up to 48 h in de-ionized water yields the enhancement of emission intensity of doped (4% Mn2+) ZnS. The correlation made through the concentration of Mn2+ versus PL intensity resulted in opposite trend (mirror image) of blue and yellow emissions.  相似文献   

5.
A natural self-assembly process of semiconductor nanoparticles leading to the formation of doped, monocrystalline nanorods with highly enhanced dopant-related luminescence properties is reported. ∼4 nm sized, polycrystalline ZnS nanoparticles of zinc-blende (cubic) structure, doped with Cu+-Al3+ or Mn2+ have been aggregated in the aqueous solution and grown into nanorods of length ∼400 nm and aspect ratio ∼12. Transmission electron microscopic (TEM) images indicate crystal growth mechanisms involving both Ostwald-ripening and particle-to-particle oriented-attachment. Sulphur-sulphur catenation is proposed for the covalent-linkage between the attached particles. The nanorods exhibit self-assembly mediated quenching of the lattice defect-related emission accompanied by multifold enhancement in the dopant-related emission. This study demonstrates that the collective behavior of an ensemble of bare nanoparticles, under natural conditions, can lead to the formation of functionalized (doped) nanorods with enhanced luminescence properties.  相似文献   

6.
Manganese nanoparticles were grown in silica glass and silica film on silicon substrate by annealing of the sol-gel prepared porous silicate matrices doped with manganese nitrate. Annealing of doped porous silicate matrices was performed at various conditions that allowed to obtain the nanocomposite glasses with various content of metallic Mn. TEM of Mn/SiO2 glass indicates the bimodal size distribution of Mn nanoparticles with mean sizes of 10.5 nm and 21 nm. The absorption and photoluminescence spectra of Mn/SiO2 glasses were measured. In the absorption spectra at 300 nm (4.13 eV) we observed the band attributed to the surface plasmon resonance in Mn nanoparticles. The spectra proved the creation of Mn2+ and Mn3+ ions in silica glass as well. The absorption spectra of Mn/SiO2 glasses annealed in air prove the creation of manganese oxide Mn2O3. The measured reflection spectra of Mn/SiO2 film manifest at 240-310 nm the peculiarity attributed to surface plasmons in Mn nanoparticles.  相似文献   

7.
Strong green luminescence of Ni2+-doped ZnS nanocrystals   总被引:1,自引:0,他引:1  
ZnS nanoparticles doped with Ni2+ have been obtained by chemical co-precipitation from homogeneous solutions of zinc and nickel salt compounds, with S2- as precipitating anion, formed by decomposition of thioacetamide (TAA). The average size of particles doped with different mole ratios, estimated from the Debye–Scherrer formula, is about 2–2.5 nm. The nanoparticles could be doped with nickel during synthesis without altering the X-ray diffraction pattern. A Hitachi M-850 fluorescence spectrophotometer reveals the emission spectra of samples. The absorption spectra show that the excitation spectra of Ni-doped ZnS nanocrystallites are almost the same as those of pure ZnS nanocrystallites (λex=308–310 nm). Because a Ni2+ luminescent center is formed in ZnS nanocrystallites, the photoluminescence intensity increases with the amount of ZnS nanoparticles doped with Ni2+. Stronger and stable green-light emission (520 nm) (its intensity is about two times that of pure ZnS nanoparticles) has been observed from ZnS nanoparticles doped with Ni2+. Received: 18 December 2000 / Accepted: 17 March 2001 / Published online: 20 June 2001  相似文献   

8.
ZnS nanoparticles with Mn2+ doping (1–2.5%) have been prepared through a simple soft chemical route, namely the chemical precipitation method. The nanostructures of the prepared undoped ZnS and Mn2+-doped ZnS:Mn nanoparticles have been analyzed using X-ray diffraction (XRD), Scanning electron microscope (SEM), transmission electron microscope (TEM) and UV–vis spectrophotometer. The size of the particles is found to be in 2–3 nm range. Room-temperature photoluminescence (PL) spectrum of the undoped sample only exhibits a blue-light emission peaked at ∼365 nm under UV excitation. However, from the Mn2+-doped samples, a yellow-orange emission from the Mn2+ 4T16A1 transition is observed along with the blue emission. The prepared 2.5% Mn2+-doped sample shows efficient emission of yellow-orange light with the peak emission at ∼580 nm with the blue emission suppressed.  相似文献   

9.
Zn1−XMnXS (X=0.85% and 1.26%) nanoparticles have been synthesized using a specially designed equipment and we have studied the influence of doping Mn2+ on the surface energy of ZnS. The high pressure behaviors of ZnS nanocrystals with different dopant contents have been investigated using angle-dispersive synchrotron X-ray powder diffraction up to 45.1 GPa. Theoretical calculations show that doping with Mn2+ increases the surface energy of the nanocrystals. The theoretical result has been further corroborated by our experimental observation of an increase in the phase transition pressure of Mn2+ doped ZnS nanocrystals in diamond-anvil-cell studies.  相似文献   

10.
We present a novel two-step chemical synthesis route to produce of disodium ethylenediaminetetraacetic acid (EDTA) capped and europium doped CdS nanoparticles. First EDTA was applied to chelate with cadmium on the surface of cadmium-rich CdS nanoparticles and act as a capping agent. Further, the purified EDTA-capped particles were used to bind with Eu3+. The purified and redispersed particles were characterized by UV/vis absorption, photoluminescence, TEM and SEM. It was observed that Eu3+ on the nanoparticle surface significantly increased the band gap emission intensity of the CdS nanoparticles.  相似文献   

11.
Electron paramagnetic resonance (EPR), luminescence and infrared spectra of Mn2+ ions doped in zinc gallate (ZnGa2O4) powder phosphor have been studied. The EPR spectra have been recorded for zinc gallate phosphor doped with different concentrations of Mn2+ ions. The EPR spectra exhibit characteristic spectrum of Mn2+ ions (S=I=5/2) with a sextet hyperfine pattern, centered at geff=2.00. At higher concentrations of Mn2+ ions, the intensity of the resonance signals decreases. The number of spins participating in the resonance has been measured as a function of temperature and the activation energy (Ea) is calculated. The EPR spectra of ZnGa2O4: Mn2+ have been recorded at various temperatures. From the EPR data, the paramagnetic susceptibility (χ) at various temperatures, the Curie constant (C) and the Curie temperature (θ) have been evaluated. The emission spectrum of ZnGa2O4: Mn2+ (0.08 mol%) exhibits two bands centered at 468 and 502 nm. The band observed at 502 nm is attributed to 4T16A1 transition of Mn2+ ions. The band observed at 468 nm is attributed to the trap-state transitions. The excitation spectrum exhibits two bands centered at 228 and 280 nm. The strong band at 228 nm is attributed to host-lattice absorption and the weak band at 280 nm is attributed to the charge-transfer absorption or d5→d4s transition band. The observed bands in the FT-IR spectrum are assigned to the stretching vibrations of M-O groups at octahedral and tetrahedral sites.  相似文献   

12.
Undoped and Fe doped CdS nanocrystals with Fe content of 2–5 at% of average crystallite size 1.2–2 nm have been obtained using chemical co-precipitation method with 2-mercaptoethonal as capping agent at 80 °C. X-ray diffraction (XRD) results showed that the undoped CdS nanocrystals were in mixed phase of cubic and hexagonal, where as the doped CdS nanocrystals were in hexagonal phase. Room-temperature ferromagnetism has been observed in Fe-doped CdS nanocrystals. Magnetic studies indicated diamagnetism in undoped, ferromagnetism in lightly doped (2 and 3 at%) and paramagnetism in samples of higher Fe content (4 and 5 at%). The substitutional incorporation of Fe3+ ion in Cd2+ sites was reflected in structural and electron paramagnetic resonance (EPR) measurements. Isolated as well as interacting Fe3+ ions are observed in EPR.  相似文献   

13.
The temperature dependence of the luminescence properties of nanocrystalline CdS/Mn2+ particles is investigated. In addition to an orange Mn2+ emission around 585 nm a red defect related emission around 700 nm is observed. The temperature quenching of both emissions is similar (Tq≈100 K). For the defect emission the reduction in the lifetime follows the temperature dependence of the intensity. For the Mn2+ emission however, the intensity decreases more rapidly than the lifetime with increasing temperature. To explain these observations a model is proposed in which the Mn2+ ions are excited via an intermediate state involving shallowly trapped (≈40 meV) charge carriers.  相似文献   

14.
A simpler identification method of tyrosine in the presence of tryptophan using CdS nanoparticles by conventional spectroscopic technique is proposed. Effect of both sulfide-enriched CdS as well as Cd2+-enriched CdS on tryptophan is investigated through absorption and emission spectroscopy. Quenching of tryptophan emission obeyed Stern-Volmer relation and was found to be independent of temperature, indicating a possible static quenching. The time-resolved fluorescence decay of tryptophan was minimally affected by sulfide-enriched CdS as well as Cd2+-enriched CdS nanoparticles, suggesting quenching to be static. In the presence of Cd2+-enriched CdS nanoparticles, the emission of tryptophan in phosphate buffer shows a typical spectral broadening along with a long wavelength increase in fluorescence emission. Additionally, spectra followed a typical isoemissive point at 440 nm when tryptophan alone was there. Similarly, isoemissive point at 340 nm was observed in the case of tyrosine. However, a further red shift of isoemissive point (470 nm) in the mixture of both tyrosine and tryptophan was observed. This observation might make Cd2+-enriched CdS nanoparticles useful for using as marker for tyrosine in the presence of tyrptophan.  相似文献   

15.
Cysteine stabilized ZnS and Mn2+-doped ZnS nanoparticles were synthesized by a wet chemical route. Using the ZnS:Mn2+ nanoparticles as seeds, silica-coated ZnS (ZnS@Si) and ZnS:Mn2+ (ZnS:Mn2+@Si) nanocomposites were formed in water by hydrolysis and condensation of tetramethoxyorthosilicate (TMOS). The influence of annealing in air, formier gas, and argon at 200-1000 °C on the chemical stability of ZnS@Si and ZnS:Mn2+@Si nanoparticles with and without silica shell was examined. Silica-coated nanoparticles showed an improved thermal stability over uncoated particles, which underwent a thermal combustion at 400 °C. The emission of the ZnS@Si and ZnS:Mn2+@Si passed through a minimum in photoluminescence intensity when annealed at 600 °C. Upon annealing at higher temperatures, ZnS@Si conserved the typical emission centered at 450 nm (blue). ZnS:Mn2+@Si yielded different high intensity emissions when heated to 800 °C depending on the gas employed. Emissions due to the Mn2+ at 530 nm (green; Zn2SiO4:Mn2+), 580 nm (orange; ZnS:Mn2+@Si), and 630 nm (red; ZnS:Mn2+@Si) were obtained. Therefore, with a single starting product a set of different colors was produced by adjusting the atmosphere wherein the powder is heated.  相似文献   

16.
Sm3+ doped CdS nanoparticles have been prepared by sol-gel method. The effect of annealing temperatures and doping concentrations of CdS on the photoluminescence spectra of Sm3+ were studied. From the measurement of its optical absorption, three phenomenological Judd-Ofelt intensity parameters (Ω2, Ω4, and Ω6) have been computed and used to parameterize the radiative properties. The influences of CdS on Sm3+ ions were studied by fluorescence spectroscopy. The fluorescence spectra revealed that the emission intensity of samarium increased considerably in the presence of CdS nanoparticles. The evaluation of radiative properties of Sm3+ containing CdS showed that the 4G5/26H7/2 transition in silica matrix had the potential to be a laser transition.  相似文献   

17.
Direct synthesis of ZnS nanocrystallites doped with Ti3+ or Ti4+ by precipitation has led to novel photoluminescence properties. Detailed X-ray diffraction (XRD), fluorescence spectrophotometry, UV–vis spectrophotometry and X-ray photoelectron spectroscopy (XPS) analysis reveal the crystal lattice structure, average size, emission spectra, absorption spectra and composition. The average crystallite size doped with different mole ratios, estimated from the Debye–Scherrer formula, is about 2.6±0.2 nm. The nanoparticles can be doped with Ti3+ and Ti4+ during the synthesis without the X-ray diffraction pattern being altered. The strong and stable visible-light emission has been observed from ZnS nanocrystallites doped with Ti3+ (its maximum fluorescence intensity is about twice that of undoped ZnS nanoparticles). However, the fluorescence intensity of the ZnS nanocrystallites doped with Ti4+ is almost the same as that of the undoped ZnS nanoparticles. The emission peak of the undoped sample is at 440–450 nm. The emission spectrum of the doped sample consists of two emission peaks, one at 420–430 nm and the other at 510 nm. Received: 27 April 2001 / Accepted: 16 August 2001 / Published online: 17 October 2001  相似文献   

18.
In this work we synthesized ZnS:Mn2+ nanoparticles by chemical method using PVP (polyvinylpyrrolidone) as a capping agent in aqueous solution. The structure and optical properties of the resultant product were characterized using UV-vis optical spectroscopy, X-ray diffraction (XRD), photoluminescence (PL) and z-scan techniques. UV-vis spectra for all samples showed an excitonic peak at around 292 nm, indicating that concentration of Mn2+ ions does not alter the band gap of nanoparticles. XRD patterns showed that the ZnS:Mn2+ nanoparticles have zinc blende structure with the average crystalline sizes of about 2 nm. The room temperature photoluminescence (PL) spectrum of ZnS:Mn2+ exhibited an orange-red emission at 594 nm due to the 4T1-6A1 transition in Mn2+. The PL intensity increased with increase in the Mn2+ ion concentration. The second-order nonlinear optical properties of nanoparticles were studied using a continuous-wave (CW) He-Ne laser by z-scan technique. The nonlinear refractive indices of nanoparticles were in the order of 10−8 cm2/W with negative sign and the nonlinear absorption indices of these nanoparticles were obtained to be about 10−3 cm/W with positive sign.  相似文献   

19.
Mn2+­doped ZnS nanoparticles have been prepared through the reverse micelles method using sodium bis (2-ethylhexyl) sulfosuccinate (AOT) as a surfactant. The prepared particles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infra-red spectrometer (FT-IR), UV-vis spectrometry, photoluminescence (PL), electron spin resonance (ESR) and thermogravimetry-differential scanning calorimetry (TG-DSC).  相似文献   

20.
Ag-doped CdS nanoparticles were synthesized by an ultrasound-assisted microwave synthesis method. The X-ray diffraction patterns reveal a structural evolution from cubic to hexagonal with increasing molar ratios of Ag+/Cd2+ from 0% to 5%. It shows that the Ag-doped hexagonal CdS nanoparticles are polycrystal. The X-ray photoelectron spectroscopy of the CdS nanoparticles doping with 5% Ag+ shows that the doped Ag in CdS is metallic. Simultaneously, the characteristic Raman peaks of the CdS nanoparticles enhance with increasing Ag+ concentrations. The photocatalytic activity of different Ag-doped samples show a reasonable change due to different ratios of Ag which doped into CdS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号