首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasma-enhanced chemical vapor deposition was used to conformally coat commercial TiO2 nanoparticles to create nanocomposite materials. Hexamethyldisiloxane (HMDSO)/O2 plasmas were used to deposit SiO2 or SiOxCyHz films, depending on the oxidant concentration; and hexylamine (HexAm) plasmas were used to deposit amorphous amine-containing polymeric films on the TiO2 nanoparticles. The composite materials were analyzed using Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). These analyses reveal film composition on the nanoparticles was virtually identical to that deposited on flat substrates and that the films deposit a conformal coating on the nanoparticles. The performance of the nanocomposite materials was evaluated using UV-vis spectroscopy to determine the dispersion characteristics of both SiOx and HexAm coated TiO2 materials. Notably, the coated materials stay suspended longer in distilled water than the uncoated materials for all deposited films.  相似文献   

2.
Abstract

Poly(butylene adipate-co-terephthalate) (PBAT) nanocomposite films with various contents of nano-titanium dioxide (TiO2) and titanium dioxide doped silver (Ag-TiO2) were prepared by a solvent casting method. The TiO2 and Ag-TiO2 nanoparticles were surface-modified with silane coupling agents to improve their compatibility and dispersibility in the PBAT matrix. They were denoted as mTiO2 and mAg-TiO2, and were characrterized by Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM). The morphology of the PBAT nanocomposite films was studied by field emission scanning electron microscopy (FE-SEM). The crystallinity of the PBAT film increased upon the introduction of the nano-TiO2/Ag-TiO2. Its mechanical properties and gas barrier properties were also significantly improved. In addition, the PBAT/mTiO2 and PBAT/mAg-TiO2 nanocomposite films showed a strong antibacterial activity against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) food-borne pathogenic bacteria.  相似文献   

3.
Nanometer-scale TiO2 particles have been synthesized by sol-gel method. It was incorporated in a glass-based silica aerogel. The composite was characterized by various techniques such as particle size analysis, scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), X-ray diffraction (XRD), infrared spectroscopy (IR) and photoluminescence (PL). The bulk glass presents a strong luminescence at wavelengths ranging from 750 to 950 nm. This PL was attributed to various non-bridging oxygen hole centers (NBOHCs) defects resulting from thermal treatment and crystallization of TiO2 at the interface between titania nanoparticles and silica host matrix.  相似文献   

4.
In this study, polyurethane/titania (PU/TiO2) nanocomposites were prepared in ultrasonic process and characterized by fourier transform IR spectroscopy (FT-IR), powder X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and infrared emissivity analysis. The TEM and SEM results indicated that the nanoparticles were dispersed homogeneously in PU matrix on nanoscale. TGA-DSC confirmed that the heat stability of the composite was improved. Infrared emissivity study showed that the nanocomposite possessed lower emissivity value than those values of pure polymer and nanoparticles.  相似文献   

5.
Synthesis and characterization of CdS/PVA nanocomposite films   总被引:1,自引:0,他引:1  
A series CdS/PVA nanocomposite films with different amount of Cd salt have been prepared by means of the in situ synthesis method via the reaction of Cd2+-dispersed poly vinyl-alcohol (PVA) with H2S. The as-prepared films were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorption, photoluminescence (PL) spectra, Fourier transform infrared spectroscope (FTIR) and thermogravimetric analysis (TGA). The XRD results indicated the formation of CdS nanoparticles with hexagonal phase in the PVA matrix. The primary FTIR spectra of CdS/PVA nanocomposite in different processing stages have been discussed. The vibrational absorption peak of CdS bond at 405 cm−1 was observed, which further testified the generation of CdS nanoparticles. The TGA results showed incorporation of CdS nanoparticles significantly altered the thermal properties of PVA matrix. The photoluminescence and UV-vis spectroscopy revealed that the CdS/PVA films showed quantum confinement effect.  相似文献   

6.
A polypyrrole/ferrospinel(NiFe2O4) nanocomposite was prepared by the in situ chemical oxidizing of pyrrole in the presence of NiFe2O4 nanoparticles in water-in-oil (w/o) microemulsion. The structural, morphological, and magnetic properties of the as-prepared polypyrrole/NiFe2O4 nanocomposite were characterized by X-ray diffraction (XRD), Fourier transform infrared spectra, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and magnetic measurements. XRD and FTIR revealed the presence of NiFe2O4 in the nanocomposite. SEM and TEM images illustrated that polypyrrole was coated on the NiFe2O4 surface. The electromagnetic parameters, such as conductivity, saturation magnetization, and coercivity of NiFe2O4 nanoparticles varied after coating with polypyrrole.  相似文献   

7.
Thermal behavior of amylose/TiO2 films under ultrasonic irradiation was investigated, and the final product of each process was applied to prepare amylose/TiO2 nanocomposite films. The effects of different degradation techniques on thermal behavior, crystallinity, and molecular weight distribution of amylose were surveyed. The evaluations of structural changes and thermal behaviors were performed by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermogravimetry analysis, FT-IR spectroscopy, and scanning electron microscopy. The XRD results clarified that the crystalline shape of amylose molecules formed is an A-type crystal due to the sonophotocatalytic processing, while the FT-IR spectra does not approve any chemical change in amylose structure. The DSC data submitted a broad endothermic peak for amylose. In the case of high loading of nanoparticles, the endothermic analysis results and diffraction peaks for the sonophotocatalytic process were not significant. This indicates that the length of amylose chains through the sonophotocatalytic degradation became smaller. An increase at the loading of TiO2 improved the hydrophilic properties of amylose/TiO2 films, which leads to the modification of water absorption behavior. Mechanical properties of amylose/TiO2 films were affected by the uniform dispersion of TiO2 in the polymer matrix.  相似文献   

8.
Anatase TiO2 nanoparticles incorporated DLC films were successfully deposited on single crystalline silicon substrates by the electrolysis of TiO2-methanol solution under ambient atmospheric pressure and low temperature. Anatase TiO2 nanoparticles were embedded into amorphous carbon matrix, forming the typical nanocrystalline/amorphous nanocomposite films, confirmed by transmission electron microscopy (TEM). TiO2 incorporation effectively increased the sp3-hybridized carbon concentration in the composite film, and further regulated the microstructure and surface morphology. Furthermore, the static contact testing completely displayed, TiO2 incorporation got the composite films super-hydrophilic, which fundamentally improved the wetting ability of DLC film.  相似文献   

9.
SrFe12−x(Zr0.5Mg0.5)xO19 nanoparticles and thin films with x=0-2.5 were synthesized by a sol-gel method on thermally oxidized silicon wafer (Si/SiO2). Structural and magnetic characteristics of synthesized samples were studied employing x-rays diffraction (XRD), transmission electron microscopy (TEM), magnetic susceptometer, atomic force microscopy (AFM), field emission scanning electron microscopy (FE-SEM), and vibrating sample magnetometer (VSM). TEM micrographs display that the narrow size distribution of ferrite nanoparticles with average particle size of 50 nm were fabricated. Fitting obtained data of effective magnetic susceptibility by Vogel-Fulcher law confirms the existence of strong magnetic interaction among fine particles. XRD patterns and FE-SEM micrographs demonstrated that single phase c-axis hexagonal ferrite films with rather narrow grain size distribution were obtained. AFM micrographs exhibited that the surface roughness increases with an increase in Zr-Mg content. It was found from the VSM graphs that with an increase in substitution contents the coercivity decreases, while the saturation of magnetization increases. The Henkle plots confirms the existence of exchange coupling among nano-grain in ferrite thin films.  相似文献   

10.
Effect of TiO2 nanoparticle size on the performance of PVDF membrane   总被引:1,自引:0,他引:1  
The comparison of the performance and morphology was carried out between neat PVDF membrane and PVDF composite membranes with nanosized TiO2 particles of different size. The results of permeability and instrumental analysis illustrated that nanometer size obviously affected the performance and structure of the PVDF membranes. The smaller nanoparticles could improve the antifouling property of the PVDF membrane more remarkably. The surface and cross-section of the membranes were observed with an atomic force microscopy (AFM), a scanning electron microscope (SEM). The TiO2/PVDF membrane with smaller nanoparticles had smaller mean pore size on its surface and more apertures inside the membrane. X-ray diffraction (XRD) experiments also suggested that smaller TiO2 nanoparticles had stronger effect on the crystallization of PVDF molecules.  相似文献   

11.
For the first time, Cadmium tungstate (CdWO4)-TiO2 composite nanofilms on a glass substrate were prepared by means of the dip-coating technique, in which collodion was used as a dispersant and film-forming agent. The films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), thermo gravimetric and thermal analyses (TG/DTA), FTIR and photoluminescence (PL) methods, respectively. SEM and XRD characterization of these films indicated that CdWO4 particles crystallized in a monoclinic wolframite-type structure whereas TiO2 particles were Anatase phase; and both of them were well distributed in the nanofilms. FTIR spectra proved the presence of CdWO4 on the nanofilms. Photoluminescent results showed that the emitting peak of CdWO4 films blue shifted slightly relative to that of CdWO4 crystal. Moreover, the PL intensity of CdWO4-TiO2 composite nanofilm was much higher than that of CdWO4 nanofilm. We ascribed that the introduction of TiO2 should be responsible for the PL enhancement.  相似文献   

12.
TiO2 sol-gels with various Ag/TiO2 molar ratios from 0 to 0.9% were used to fabricate silver-modified nano-structured TiO2 thin films using a layer-by-layer dip-coating (LLDC) technique. This technique allows obtaining TiO2 nano-structured thin films with a silver hierarchical configuration. The coating of pure TiO2 sol-gel and Ag-modified sol-gel was marked as T and A, respectively. According to the coating order and the nature of the TiO2 sol-gel, four types of the TiO2 thin films were constructed, and marked as AT (bottom layer was Ag modified, surface layer was pure TiO2), TA (bottom layer was pure TiO2, surface layer was Ag modified), TT (pure TiO2 thin film) and AA (TiO2 thin film was uniformly Ag modified). These thin films were characterized by means of linear sweep voltammetry (LSV), X-ray diffraction (XRD), scanning electron microscopy (SEM), electrochemical impedance spectroscopy and transient photocurrent (Iph). LSV confirmed the existence of Ag0 state in the TiO2 thin film. SEM and XRD experiments indicated that the sizes of the TiO2 nanoparticles of the resulting films were in the order of TT > AT > TA > AA, suggesting the gradient Ag distribution in the films. The SEM and XRD results also confirmed that Ag had an inhibition effect on the size growth of anatase nanoparticles. Photocatalytic activities of the resulting thin films were also evaluated in the photocatalytic degradation process of methyl orange. The preliminary results demonstrated the sequence of the photocatalytic activity of the resulting films was AT > TA > AA > TT. This suggested that the silver hierarchical configuration can be used to improve the photocatalytic activity of TiO2 thin film.  相似文献   

13.
Silver nanorods with average diameters of 120-230 nm and aspect ratio of 1.7-5.0 were deposited on the surface of TiO2 films by photoelectrochemical reduction of Ag+ to Ag under UV light. The composite films prepared on soda-lime glass substrates were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The results show that the TiO2 film after UV irradiation in AgNO3 solution is composed of anatase phase TiO2 and metallic silver with face centered cubic structure. Other compounds cannot be found in the final films. The maximum deposition content of silver particles on the surface of TiO2 film was obtained with the AgNO3 concentration of 0.1 M. The kinetic growth rates of silver particles can be controlled by photocatalytic activity of TiO2 films. The studies suggest that the growth rates of silver particles increase with the enhancement of photocatalytic activity of TiO2 films. The maximum growth rate of silver particles loaded on TiO2 films can be up to 0.353 nm min−1 among samples 1#, 2# and 3#, while the corresponding apparent rate constant of TiO2 is 1.751 × 10−3 min−1.  相似文献   

14.
GaN nanoparticles were prepared on sapphire (0001) substrates with ZnO sacrificial layers by self assembly of Ga2O3 films in their reaction with NH3. ZnO sacrificial layers with different thicknesses and Ga2O3 films were deposited on sapphire substrates in turn by a radio frequency (RF) magnetron sputtering system. Nitridation of the Ga2O3 films was then carried out in a quartz tube furnace. The effect of ZnO sacrificial layer thickness on the structure and optical properties of nanoparticles prepared by RF magnetron sputtering were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and photoluminescence (PL). GaN nanoparticles with ZnO sacrificial layers of different thicknesses possess hexagonal wurtzite crystal structure and have a preferred orientation with c axis perpendicular to the sapphire substrates. XRD, SEM, and AFM results reveal that the better-crystallinity, uniform, and well-dispersed GaN nanoparticles (~30 nm) without agglomeration were obtained with a ZnO sacrificial layer 300-nm thick. The PL result reveals that the optical properties of the GaN nanoparticles are improved with a ZnO sacrificial layer 300-nm thick. Therefore, we suggest that a ZnO sacrificial layer 300-nm thick is the most suitable condition for obtaining better-quality GaN nanoparticles with good luminescence performance. Moreover, the mechanism of the formation of GaN nanoparticles with ZnO sacrificial layers is also discussed.  相似文献   

15.
Au/SiO2 nanocomposite films were prepared by radio frequency sputtering technique and annealing. The above nanocomposite films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and atomic force microscopy (AFM). The surface of the nanocomposite films was uniform with the particle diameter of 100-300 nm. The size of Au crystallites increased on increasing annealing time. The luminescent behavior of the nanocomposite films was characterized by photoluminescence (PL) with different excitation wavelengths. Two emission peaks at around 525 nm and 560 nm were observed with the excitation wavelength at 325 nm. An intensive emission peak at around 325 nm was observed with the excitation wavelength at 250 nm, which is related to the defective structure of the amorphous SiO2 layer because of oxygen deficiency, and could be applied to many fields, such as ultraviolet laser and ultraviolet detector.  相似文献   

16.
This paper presents the results of surface characterization of TiO2 thin films deposited on different substrates by the use of high-energy reactive magnetron sputtering. Structural investigations carried out by X-ray diffraction (XRD) and atomic force microscopy (AFM) have shown a strong influence of both the substrate type, and its placement in the deposition chamber (relative to the sputtering target), on the structural properties of the films. In all cases, there is evidence for pseudoepitaxial growth. XRD examination showed existence of TiO2-rutile phase with preferred (1 1 0) orientation and AFM measurements revealed nanocrystalline structure directly after deposition. X-ray photoelectron spectroscopy analysis showed that the TiO2 films have stoichiometric composition.  相似文献   

17.
Crystalline TiO2 films were prepared by unbalanced magnetron sputtering and the structure was confirmed by XRD. An organic layer of 11-hydroxyundecylphosphonic acid (HUPA) was prepared on the TiO2 films by self-assembling, and the HUPA on TiO2 films was confirmed by FTIR analysis. Simultaneously, hydroxyl groups were introduced in the phosphonic acid molecules to provide a functionality for further chemical modification. 2-Methacryloyloxyethyl phosphorylcholine (MPC), a biomimetic monomer, was chemically grafted on the HUPA surfaces at room temperature by surface-initiated atom-transfer radical polymerization. The surface characters of TiO2 films modified by poly-MPC were confirmed by FTIR, XPS and SEM analysis. Platelet adhesion experiment revealed that poly-MPC modified surface was effective to inhibit platelet adhesion in vitro.  相似文献   

18.
Bismuth nanocap arrays have been prepared by vacuum depositing Bi films onto the surfaces of self-assembled monolayer arrays of SiO2 nanoparticles. The surface morphologies, structures, and optical properties of the obtained samples have been characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), atomic force microscope (AFM), X-ray diffraction (XRD), and ultraviolet–visible–near infrared (UV–vis–NIR) spectrophotometer. TEM and AFM images indicated that the SiO2/Bi composite nanoparticles were incompletely encapsulated and their surfaces were relatively rough. UV–vis–NIR absorption spectra showed that Bi nanocap arrays had strong and tunable surface plasmon resonance peaks in the visible and near infrared regions, which were dependent dramatically on the relative ratio of the SiO2 core diameter to the Bi cap thickness.  相似文献   

19.
Poly(lactic acid) (PLA)-grafted TiO2 particles were prepared by in situ melt polycondensation of lactic acid onto the surface of TiO2 nanoparticles. The resulting products were characterized by FTIR, XPS, TG-FTIR, XRD analysis and electron microscopy observation so as to have a better understanding of bonding between the graft polymer and nanoparticles. New characteristic peaks of Ti-carboxylic coordination bond, the changes in the relative intensities of the infrared absorption bands of graft polymer and the two decomposition stage of PLA-grafted TiO2 confirmed that PLA was grafted on the surface of TiO2 nanoparticles. By attachment of PLA, the PLA-grafted TiO2 samples exhibited much better dispersion and a slightly larger particle size than bare TiO2 particles. PLA-grafted TiO2 nanoparticles will find wide applications in biomedical and eco-friendly materials, especially as fillers in PLA matrix.  相似文献   

20.
A novel composite alkaline polymer electrolyte based on poly(vinyl alcohol) (PVA) polymer matrix, titanium dioxide (TiO2) ceramic fillers, KOH, and H2O was prepared by a solution casting method. The properties of PVA-TiO2-KOH alkaline polymer electrolyte films were studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and AC impedance techniques. DSC and XRD results showed that the domain of amorphous region in the PVA polymer matrix augmented when TiO2 filler was added. The SEM result showed that TiO2 particles dispersed into the PVA matrix although some TiO2 aggregates of several micrometers were formed. The alkaline polymer electrolyte showed excellent electrochemical properties. The room temperature (20 °C) ionic conductivity values of typical samples were between 0.102 and 0.171 S cm−1. The Zn-Ni secondary battery with the alkaline polymer electrolyte PVA-TiO2-KOH had excellent electrochemical property at the low charge-discharge rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号