首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
 假定Anderson-Grüneisen参量δT(T, p)=δT(T, 0),利用改造的Tait方程,导出了固体热膨胀系数与压强关系的一个近似公式。应用于NaCl晶体,在压强为0~1 GPa、温度为300~800 K范围内,热膨胀系数的计算值与实验值一致。  相似文献   

2.
对HL-2A 装置原有的高压电源进行了高频化改造,改造后的单元电源采用脉冲步进阶梯调制(PSM)技术,采用24 个不可控整流电源模块与4 个调节电源模块串联输出,通过控制各模块的投入切出,使输出电压范围在0~20kV 可调,模块开关频率最高可以达到20kHz。通过仿真和实验测试结果表明,该电源运行参数可以达到20kV/200A,开关频率最高达到了20kHz,能够满足系统的实验需求。  相似文献   

3.
介绍了自行研制的米散射多普勒激光雷达的系统结构。针对系统存在的问题,对接收机子系统、工作时序、扫描方式等方面作了改造。实验结果表明:改造后系统光学鉴频器的频谱稳定性提高了2.8倍;消除了系统近距离的探测盲区;在0~2.5 km的高度范围内,当垂直距离分辨力为21.2 m、脉冲累积数为9 000发时,改造后的米散射多普勒激光雷达系统连续30 min测量的水平风速大小和方向的标准偏差的最大值分别小于1 m/s和18.3°,平均值分别小于0.43 m/s和7.7°;与探空仪的风场对比测量结果吻合得很好;当每个径向脉冲累积数为1 000发时,采用四波束扫描获得的2 km以下东西方向径向风速的相关系数为0.99,偏差为-0.038 m/s,标准偏差为1.34 m/s。  相似文献   

4.
用单色亮度比较法确定高温黑体的温度   总被引:1,自引:0,他引:1  
代彩红  于家琳 《光学技术》2002,28(3):250-252
高温黑体温度的测量水平将直接影响光谱辐射度量值的不确定度。我国的高温温标截止于 2 2 0 0℃。确定2 2 0 0℃以上范围内的温度必须进行温度延伸。从Planck公式的定义出发 ,推导出用单色亮度比较法进行温度延伸的原理和方法。在国家光谱辐射度基准改造中 ,该方法被用来确定高温黑体的温度。实验证明 :使用参考灯替代法能够有效消除探测器灵敏度漂移带来的误差。此外 ,旁证实验用来验证该方案的可行性。  相似文献   

5.
根据研制分离作用RFQ和升级改造1MeV ISR RFQ的需要,设计了一台ECR 0+离子源及低能输运(LEBT)系统.低能输运系统使用2个静电透镜聚焦柬流,在引出电压22kV时,EBT末端得到6mA以上总脉冲束流、束流归一化均方根发射度为0.127πmm.mrad.束腰可前后移动160mm.  相似文献   

6.
《物理与工程》2005,15(2):63-63
最近发明了一个新的成像技术,能在0.1nm尺度以下观察材料,这个技术也许能使研究人员看到晶格中的单个杂质原子.现有的透射电子显微镜(TEM)不能分辨0.15nm以下的物体,比如晶格中的一个原子队列.Peter D.Nellist和其同事改造了一个TEM,得到了晶体硅的一个直接成像,能分辨出距离为0.078nm的硅原子对.文章作者写道,“这样高的分辨率应该能带来对材料性质的原子尺度的了解,可能会应用于材料、化学和纳米科学”.  相似文献   

7.
以家用分体式空调作为节能改造对象,将传统单一冷凝改进为复合冷凝,即在压缩机排气管路上串联一个水冷冷凝器,吸收部分冷凝热制备生活热水。并在此基础上建立了分析模型。模拟计算结果表明,复合冷凝空调的目的效率得到了大大的提高,当空调的蒸发温度为0℃、冷凝温度为30℃时,空调目的效率由单一冷凝时的52%上升到70%。  相似文献   

8.
人类仅仅用自身的眼睛和双手来认识世界和改造世界是很有限的,人的眼睛能够直接分辨物体的最小间隔为0.07mm,人的双手也无法对微小物体进行精确的控制和操纵.但自80年代以来人们先后发明了形式多样、分辨率极高的新一代显微镜.  相似文献   

9.
本文论述了对原西德进口三复合销钉式冷喂料挤出机热水循环加热/冷却(温度控制)系统的国产化改造实施方案。文章中介绍了该设备现状,改造方案及特点,技术关键,以及改造后样机的试运行的情况。  相似文献   

10.
HL-2A��������ij�������   总被引:4,自引:4,他引:0  
为进一步提高HL-2A装置的放电参数和优化等离子体位形,给出了三种可能的主机改造途径:保留真空室,去掉并调整真空室内部分多极场线圈的局部改造方案;保留真空室,重新布局极向场线圈的中等规模改造方案;重新设计真空室和极向场线圈系统的大规模改造方案。对三种改造方案对放电参数和位形的影响和改造工程的可行性进行了分析比较,重新设计真空室和极向场线圈系统的大规模改造方案是最佳选择。  相似文献   

11.
In the frame of the ITER fusion program, large Cable In Conduit Cables (CICC) made with NbTi superconductors are foreseen for the poloidal field system. These coils are pulsed and so subjected to fast variations in magnetic field. Superconductors have then to be designed in order to reduce AC losses to an acceptable level. A solution could be to insert a copper nickel resistive barrier in the copper stabilizer surrounding the filamentary area of the composite. The purpose of this barrier is to reduce interstrand coupling currents. In order to predict the effect of this barrier on AC losses, a modeling of a 36 strands CICC has been realized. According to this code, the ability of the resistive barrier to reduce coupling currents is dependent on its location. For this study, three CICC with three barrier locations, from the inner to the outer diameter of the copper crown stabilizer, have been produced. AC losses have been measured and compared to our numerical model.  相似文献   

12.
通常利用单色仪输出的单色光对空间遥感光谱仪进行波长定标。提出以空间遥感光谱仪的置信度为标准,来评价宽波段单色仪高精度波长定标精度的方法。通过对仪器精度的分析,分别求出单色仪的波长的重复性误差和偏差。应用高压汞灯的本征谱和光栅衍射多级谱作为定标谱线,避免更换灯源带来的误差。通过粗细定标相结合的方法,缩短扫描时间,并且运用高斯拟合对波峰进行精确定位,缩小误差。最后利用高次拟合得到的关系式,测出单色仪波长精度,计算出空间遥感光谱仪定标的置信度。以1.5 M单色仪为例,单色仪在200~840 nm波段内波长精度±0.016 nm,则空间遥感光谱仪的波长精度达到±0.050 nm的置信度为99.82%。  相似文献   

13.
Nanotechnology will be an increasing part of the everyday lives of most people in the world. There is a general recognition that few people understand the implications of the technology, the technology itself or even the definition of the word. This lack of understanding stems from a lack of knowledge about science in general but more specifically difficulty in grasping the size scale and symbolism of nanotechnology. A potential key to informing the general public is establishing the ability to comprehend the scale of nanotechnology. Transitioning from the macro to the nanoscale seems to require an ability to comprehend scales of one-billion. Scaling is a skill not common in most individuals and tests of their ability to extrapolate size based upon scaling a common object demonstrates that most individuals cannot scale to the extent needed to make the transition to nanoscale. Symbolism is another important vehicle to providing the general public with a basis to understand the concepts of nanotechnology. With increasing age, individuals are able to draw representations of atomic scale objects, but these tend to be iconic and the different representations not easily translated. Ball and stick models are most recognized by the public, which provides an opportunity to present not only useful symbolism but also a reference point for the atomic scale.  相似文献   

14.
Moiré interferometry—a high sensitivity whole-field optical technique—was used to follow the evolution of the deformation process of an aluminium sample subjected to a uniaxial tensile test. This technique allowed us to measure the two in-plane displacement components undergone by the sample, to evaluate the strain, stress and rotation fields, and to appreciate the trends in the deformation pattern that characterized the different stages of the test. Through a subtraction process between fields obtained at two different load levels, we were able to identify the area where strains began to localize and to observe the appearance of the diffuse neck.  相似文献   

15.
Cookstove operation comprises three basic processes, namely combustion of firewood, natural air draft due to the buoyancy induced by the temperature difference between the hearth and its surroundings, and heat transfer to the pot, stove body and surrounding atmosphere. Owing to the heterogenous and unsteady burning of solid fuel, there exist nonlinear and dynamic interrelationships among these process parameters. A steady-state analytical model of the cookstove operation is developed for its design improvement by splitting the hearth into three zones to study char combustion, volatile combustion and heat transfer to the pot bottom separately. It comprises a total of seven relations corresponding to a thorough analysis of the three basic processes. A novel method is proposed to model the combustion of wood to mimic the realities closely. Combustion space above the fuel bed is split into 1000 discrete parts to study the combustion of volatiles by considering a set of representative volatile gases. Model results are validated by comparing them with a set of water boiling tests carried on a traditional cookstove in the laboratory. It is found that the major thrust areas to improve the thermal performance are combustion of volatiles and the heat transfer to the pot. It is revealed that the existing design dimensions of the traditional cookstove are close to their optimal values. Addition of twisted-tape inserts in the hearth of the cookstove shows an improvement in the thermal performance due to increase in the heat transfer coefficient to the pot bottom and improved combustion of volatiles.  相似文献   

16.
Latent Variable Models (LVMs) are well established tools to accomplish a range of different data processing tasks. Applications exploit the ability of LVMs to identify latent data structure in order to improve data (e.g., through denoising) or to estimate the relation between latent causes and measurements in medical data. In the latter case, LVMs in the form of noisy-OR Bayes nets represent the standard approach to relate binary latents (which represent diseases) to binary observables (which represent symptoms). Bayes nets with binary representation for symptoms may be perceived as a coarse approximation, however. In practice, real disease symptoms can range from absent over mild and intermediate to very severe. Therefore, using diseases/symptoms relations as motivation, we here ask how standard noisy-OR Bayes nets can be generalized to incorporate continuous observables, e.g., variables that model symptom severity in an interval from healthy to pathological. This transition from binary to interval data poses a number of challenges including a transition from a Bernoulli to a Beta distribution to model symptom statistics. While noisy-OR-like approaches are constrained to model how causes determine the observables’ mean values, the use of Beta distributions additionally provides (and also requires) that the causes determine the observables’ variances. To meet the challenges emerging when generalizing from Bernoulli to Beta distributed observables, we investigate a novel LVM that uses a maximum non-linearity to model how the latents determine means and variances of the observables. Given the model and the goal of likelihood maximization, we then leverage recent theoretical results to derive an Expectation Maximization (EM) algorithm for the suggested LVM. We further show how variational EM can be used to efficiently scale the approach to large networks. Experimental results finally illustrate the efficacy of the proposed model using both synthetic and real data sets. Importantly, we show that the model produces reliable results in estimating causes using proofs of concepts and first tests based on real medical data and on images.  相似文献   

17.
The COVID −19 pandemic reminded us that we need better contingency plans to prevent the spread of infectious agents and the occurrence of epidemics or pandemics. Although the transmissibility of SARS-CoV-2 in water has not been confirmed, there are studies that have reported on the presence of infectious coronaviruses in water and wastewater samples. Since standard water treatments are not designed to eliminate viruses, it is of utmost importance to explore advanced treatment processes that can improve water treatment and help inactivate viruses when needed. This is the first study to investigate the effects of hydrodynamic cavitation on the inactivation of bacteriophage phi6, an enveloped virus used as a SARS-CoV-2 surrogate in many studies. In two series of experiments with increasing and constant sample temperature, virus reduction of up to 6.3 logs was achieved. Inactivation of phi6 at temperatures of 10 and 20 °C occurs predominantly by the mechanical effect of cavitation and results in a reduction of up to 4.5 logs. At 30 °C, the reduction increases to up to 6 logs, where the temperature-induced increased susceptibility of the viral lipid envelope makes the virus more prone to inactivation. Furthermore, the control experiments without cavitation showed that the increased temperature alone is not sufficient to cause inactivation, but that additional mechanical stress is still required. The RNA degradation results confirmed that virus inactivation was due to the disrupted lipid bilayer and not to RNA damage. Hydrodynamic cavitation, therefore, has the potential to inactivate current and potentially emerging enveloped pathogenic viruses in water at lower, environmentally relevant temperatures.  相似文献   

18.
The generation of aeolian tones from a two-dimensional circular cylinder situated in a uniform cross-flow is investigated. The major emphasis here is placed on identifying the important noise generation mechanisms. Acoustic-viscous splitting techniques are utilized to compute modelled acoustic source terms and their corresponding acoustic fields. The incompressible Reynolds averaged Navier-Stokes equation is used to compute the near-field viscous flow solution, from which modelled acoustic source terms are extracted based on an approximation to the Lighthill’s stress tensor. Acoustic fields are then computed with an acoustic solver to solve the linearized Euler equations forced by the modelled source terms. Computations of the acoustic field based on the approximated Lighthill’s stress tensor are shown to be in good agreement with those computed from the surface dipole sources obtained using Curle’s solution to the acoustic analogy. It is shown in this paper that the stress tensor source term in the streamwise direction makes a comparable, but slightly larger contribution to the overall radiated field, compared with that due to the stress tensor in the direction normal to the mean flow. In addition, it is shown that shear sources, which arise due to the interaction between the fluctuating velocity and the background steady mean velocity, make the greatest contribution to the acoustic field, while the self-noise sources, which represents the interaction between the fluctuating velocities, is shown to be comparably negligible.  相似文献   

19.
This study developed spray-adaptive mesh refinement algorithms with directional sensitivity in an unstructured solver to improve spray simulation for internal combustion engine application. Inadequate spatial resolution is often found to cause inaccuracies in spray simulation using the Lagrangian–Eulerian approach due to the over-estimated diffusion and inappropriate liquid–gas phase coupling. Dynamic mesh refinement algorithms adaptive to fuel sprays and vapor gradients were developed in order to increase the grid resolution in the spray region to improve simulation accuracy. The local refinement introduced the coarse-fine face interface that requires advanced numerical schemes for flux calculation and grid rezoning with moving boundaries. To resolve the issue in flux calculation, this work implemented the refinement/coarsening algorithms into a collocated solver to avoid tedious interpolations in solving the momentum equations. A pressure correction method was applied to address unphysical pressure oscillations due to the collocation of pressure and velocity. An edge-based algorithm was used to evaluate the edge-centered quantities in order to account for the contributions from all the cells around an edge at the coarse-fine interface. A quasi-second-order upwind scheme with strong monotonicity was also modified to accommodate the coarse-fine interface for convective fluxes. To resolve the issue related to grid rezoning, rezoning was applied to the initial baseline mesh only and the new locations of the refined grids were obtained by interpolating the updated baseline mesh. The time step constraints were also re-evaluated to account for the change resulting from mesh refinement. The present refinement algorithm was used in simulating fuel sprays in an engine combustion chamber. It was found that the present approach could produce the same level of results as those using the uniformly fine mesh with substantially reduced computer time. Results also showed that this approach could alleviate the artifacts related to the Lagrangian discrete modeling of spray drops due to insufficient spatial resolution.  相似文献   

20.
The aim of the present work was to characterize both the effects of pressure and of hydrogen addition on methane/air premixed laminar flames. The experimental setup consists of a spherical combustion chamber coupled to a classical shadowgraphy system. Flame pictures are recorded by a high speed camera. Global equivalence ratios were varied from 0.7 to 1.2 for the initial pressure range from 0.1 to 0.5 MPa. The mole fraction of hydrogen in the methane + hydrogen mixture was varied from 0 to 0.2. Experimental results were compared to calculations using a detailed chemical kinetic scheme (GRIMECH 3.0). First, the results for atmospheric laminar CH4/air flames were compared to the literature. Very good agreements were obtained both for laminar burning velocities and for burned gas Markstein length. Then, increasing the hydrogen content in the mixture was found to be responsible for an increase in the laminar burning velocity and for a reduction of the flame dependence on stretch. Transport effects, through the reduction of the fuel Lewis number, play a role in reducing the sensitivity of the fundamental flame velocity to the stretch. Finally, when the pressure was increased, the laminar burning velocity decreased for all mixtures. The pressure domain was limited to 0.5 MPa due to the onset of instabilities at pressures above this value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号