首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multifilamentary Bi(2223)/Ag tapes often exhibit AC loss levels comparable to those measured in monofilamentary samples, which is partly due to the large coupling currents induced in the low resistive sheath material. Surrounding the individual filaments by electrically insulating barrier layers suppresses these currents and strongly reduces the coupling. We demonstrate this effect with various types of magnetic and self-field AC loss measurements on a series of Bi(2223)/BaZrO3/Ag tapes. We also discuss the influence of barrier thickness, twist pitch length and filament arrangement on the measured losses in these composite conductors.  相似文献   

2.
The cable-in-conduit superconductors are preferred for applications where the AC losses and stability are a major concern, e.g., fusion magnets and SMES. A review of coupling currents loss results for both NbTi and Nb3Sn cable-in-conduit conductors (CICC) is presented and the AC loss relevant features are listed, with special emphasis for the role of the interstrand resistance and strand coating. The transient stability approach for CICCs is discussed and the analytical models are quoted as well as the relevant experimental database. The likely spectrum of transient disturbance in CICC is reviewed and the need to account for interstrand current sharing in the design is outlined. Eventually a practical criterion for the interstrand resistance is proposed to link the stability and AC loss design.  相似文献   

3.
The coupling current losses represent an essential contribution to AC losses in most practical superconducting conductors. The origin of this loss type is well known, being caused by induced currents in different loops consisting of superconducting and non-superconducting parts. However, the ‘current pattern' in different conductor types (strands, flat or round cables, more complicated cable structures, CICC) varies appreciably. These differences are mainly due to geometrical effects (size and shape of filaments and/or strands, their spatial distribution, conductor aspect ratio, demagnetization effects). Although the general knowledge about AC losses in low temperature cable structures is by far not complete (mainly at higher frequencies, in inhomogeneous fields and for inhomogeneous cable structure), an attempt is made to summarize those results which can be adopted to high Tc conductors and some remarks are made about new features of AC losses in these conductor types.  相似文献   

4.
A simple technique is proposed to evaluate interstrand AC coupling losses deposed in superconducting multistage cables under low excitation of the transverse homogeneous time-varying magnetic field. The technique uses the superposition of the solutions for the induced coupling currents and interstrand or intersubcable AC losses in pairs of strands or subcables, constituting a multistage cable. The technique is valid under assumption of no resistance offered by strands and subcables for the longitudinal currents. The method allows one also to take into account the effect of additional co-twisted pure copper strands or subcables.  相似文献   

5.
我们使用分析程序SAITOKSCPF研究了KSTAR PF 超导线圈的运行特性.为了控制KSTAR超导托卡马克的运行等离子的外形以便实现受控热核聚变反应,在超导PF线圈内通过高变化率的运行电流.由于电磁感应,在超导线圈、支持结构和低温容器内产生感应电流和损耗.超临界氦流过CICC导体内部保持超导体运行在4.2K的温度.分析表明最大的温度在PF1线圈内部.在这篇论文中,我们对于单一和连续条件下等离子体放电对超导体运行的影响进行了研究.  相似文献   

6.
For the most common AC application frequencies, the main component of the AC losses in multifilamentary Bi(2223) tapes are caused by hysteresis- and coupling losses. These losses can be reduced enhancing the matrix resistivity and applying a twist to the filaments. We report on the AC loss properties of 37-filament tapes with AgAu (8 wt.%) matrix, and novel 19-filament tapes with SrCO3 barriers between the filaments. We performed transport AC loss and magnetic AC loss measurements in parallel and perpendicular magnetic fields. Both kinds of tapes were also prepared with filament twists below a twist pitch of 20 mm. The influence of the different tape modifications on the AC loss behaviour is presented and compared with theoretical models to understand the effect of the resistive matrix. In the case of magnetic AC loss measurements, reduced AC losses due to decoupled filaments were observed for the twisted tapes with a resistive matrix in low parallel fields.  相似文献   

7.
It is widely acknowledged that current non-uniformity is a major source of reduction of quench currents in superconducting multistrand cables at non-steady state conditions. Recently we performed several experimental studies on the current non-uniformity in CICC and AC cables. In this paper we present the summary of the experimental methods used. Indirect methods with use of local magnetic field sensors can provide general information about non-uniformity inside CICCs and other large size cables. Indirect methods may be used in real superconducting devices. Direct measurements of the current in each strand provide exact information about the current distribution, but they need special sample preparations. Because no method is perfect, the best idea is to use them as complementary to each other in the study of a certain type of a cable. The results obtained from the measurements of the current non-uniformity in CICC and AC cables by both methods are briefly discussed.  相似文献   

8.
蒋华伟 《低温与超导》2006,34(3):201-204
C ICC超导体是大型低温超导磁体的首选导体,它运行在大电流和磁场快速变化的环境中,磁通进出超导体以及外界磁场的变化会产生交流损耗,而交流损耗对C ICC超导体稳定性运行有很大的影响,这样开展C ICC超导体交流损耗的研究就显得非常重要。因此,文中针对C ICC导体运行条件和几何结构,提出交流损耗数字模拟的想法,并将数字模拟结果与工程计算值进行了比较和分析,二者基本吻合。  相似文献   

9.
Hysteresis losses and coupling losses, a main component of the AC losses in Bi(2223) tapes, can effectively be reduced by enhancing the resistivity of the matrix material between the filaments and applying a filament twist. Since through alloying the sheath, as using AgAu(8 wt.%), the resistivity can only be raised by a factor <10 (77 K), a new conductor configuration with a quite novel composite matrix having resistive SrCO3 barriers inside the Ag matrix between the filaments was developed. These new barriers, a cheap and commercial material, withstand the tape annealing, do not react with the superconductor, sinter dense and have a good bonding to Ag. Applying two different preparation techniques for 19 filament prototype tapes, critical current densities up to 20.7 kA cm−2 were achieved. We report on tape preparation, the effect on the phase texture and the superconducting properties of such barrier tapes.  相似文献   

10.
The AC self-field loss in Bi(2223)Ag-sheathed tapes with different number of filaments has been measured between 59 and 2500 Hz by means of a dual lock-in amplifier. Due to the wide frequency range of the measurements, we have been able to dissociate quantitatively the different self-field loss contributions: hysteretic, eddy current and resistive loss (near Ic). This is an important advantage compared to single frequency measurements where such loss dissociation is only qualitative. The hysteresis losses of the different tapes fall between Norris' predictions for elliptical and strip cross-section. The relative weight of eddy current loss is found to be inversely proportional to the current ratio—the higher the i, the less is their contribution. Frequency-independent resistive loss due to flux-creep is observed for high currents at low frequencies; this loss becomes quickly negligible with the increasing frequency.  相似文献   

11.
We measured and analyzed AC losses of MgB2 tape with 19 filaments surrounded by Ti barriers and embedded in copper stabilization, exposed to external magnetic field with frequencies from 30 mHz up to 1.4 Hz and amplitudes up to 0.8 T at 4.2 K. Using the measured frequency dependence of the total AC losses we determined the contribution of hysteresis and coupling losses. The transverse resistivity determined from the coupling losses is considerably higher than that corresponding to the resistivity of copper stabilization before the tape processing due to diffusion of Ti. From the measured penetration field critical current densities were determined using results of theories for circular as well as rectangular filaments.  相似文献   

12.
Power cables are one of the most promising applications for the superconducting coated conductors. In the AC use, only small resistive loss is generated, but the removal of the dissipated heat from the cryostat is inefficient due to the large temperature difference. The aim of this work is to minimize the AC losses in a multilayer coaxial cable, in which the tapes form current carrying cylinders. The optimized parameters are the tape numbers and lay angles in these cylinders. This work shows how to cope with the mechanical constraints for the lay angles and discrete tape number in optimization. Three common types of coaxial cables are studied here to demonstrate the feasibility of optimization, in which the AC losses were computed with a circuit analysis model formulated here for arbitrary phase currents, number of phases, and layers. Because the current sharing is practically determined by the inductances of the layers, the optima were obtained much faster by neglecting the nonlinear resistances caused by the AC losses. In addition, the example calculations show that the optimal cable structure do not usually depend on the AC loss model for the individual tapes. On the other hand, depending on the cable type, the losses of the optimized cables may be sensitive to the lay angles, and therefore, we recommend to study the sensitivity for the new cable designs individually.  相似文献   

13.
In a typical superconducting coil made of BSCCO/Ag tape, both amplitude and direction of the magnetic field determine the critical current, resistive voltage and AC loss. The distribution of the magnetic field along and across the superconducting tape in a coil is rather complex. This gives rise to the question: how accurate can one predict the critical current, VI characteristic and AC loss of the AC coil from results of short sample measurements? To answer this question, we have measured and compared the characteristics of a short sample and a small coil employing 14 m of the same tape at 77 K. The comparison is performed as follows. First, a short sample is characterised with regard to the field dependence of the critical current, VI characteristic and the AC loss. Second, the distribution of the magnetic field along the tape in a coil is accurately calculated. From the data, the voltage along the tape and the loss of the tape in the coil are found. Finally, the resistive voltage and the AC loss of the complete coil are calculated and compared to measured AC losses in the frequency range of 0 to 160 Hz, typical for power applications.  相似文献   

14.
We study experimentally and theoretically the AC transport current loss characteristics of a tape in multiple tapes assembled in single layer and subject to external field produced by transport currents of adjacent tapes. We measured the AC transport current losses of a Bi2223 silver-sheathed tape in a single layer arrangement of three tapes using our newly developed potential leads arrangement to avoid spurious loss components caused by the magnetization in the adjacent tapes. In the paper, the influence of the external AC field produced by adjacent tapes on the loss characteristics is studied based on the experimental results and theoretical analysis.  相似文献   

15.
AC losses in a superconductor strip are numerically evaluated by means of a finite element method formulated with a current vector potential. The expressions of AC losses in an infinite slab that corresponds to a simple model of infinitely stacked strips are also derived theoretically. It is assumed that the voltage-current characteristics of the superconductors are represented by Bean’s critical state model. The typical operation pattern of a Superconducting Magnetic Energy Storage (SMES) coil with direct and alternating transport currents in an external AC magnetic field is taken into account as the electromagnetic environment for both the single strip and the infinite slab. By using the obtained results of AC losses, the influences of the transport currents on the total losses are discussed quantitatively.  相似文献   

16.
A method for the calculation of magnetic field dynamics and AC losses in superconductors with smooth current–voltage characteristics is described. It is based on an integral equation for the current density, recently used by Brandt for magnetic relaxation. Brandt's equation is generalized to include arbitrary external magnetic fields and transport currents. One of the benefits of the integral equation formulation is that no boundary conditions ‘at infinity' are required, thus restricting the calculation region to the conductor cross section. The method is applied to superconducting tapes in oblique external fields. A further extension of the theory is shown to be applicable to the calculation of coupling losses in twisted multifilamentary superconductors.  相似文献   

17.
In this paper, we fabricated Bi2223 tapes with interfilamentary oxide barriers and evaluated interfilamentary coupling properties under an AC perpendicular magnetic field at 77 K. To avoid the side effect on Bi2223 phase formation during sintering process, SrZrO3 was selected for barrier materials. Moreover, 20 wt.% Bi2212 was mixed with SrZrO3 to improve its ductility for cold working. Monocore Ag-sheathed rods were coated by the oxide barriers with slurry before stacking with a honeycomb structure. By twisting the filament with twist pitch length below 10 mm and introducing interfilamentary barriers, the coupling frequency (fc) under an AC perpendicular field, which is inversely proportional to the decay time constant (τc) of coupling current, exceeded 100 Hz. At perpendicular field amplitude above full-penetration field, the magnetization losses of the twisted barrier tape were reduced by 30–40% around power-grid frequency, compared with analytical values for fully-coupled filaments. However, the loss values were still considerably higher than the prediction of the hysteresis loss (Qh) for the completely decoupled filaments. From the frequency dependence of losses, it was suggested that the loss reduction of twisted barrier tape around power-grid frequency were limited by not only the contribution of coupling current loss (Qc) but also the insufficient Qh reduction due to the presence of physical connection among the filaments positioned near the center of a tape section.  相似文献   

18.
下电极对ZnO薄膜电阻开关特性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
李红霞  陈雪平  陈琪  毛启楠  席俊华  季振国 《物理学报》2013,62(7):77202-077202
本文采用直流磁控溅射法在三种不同的下电极(BEs)上制备了ZnO薄膜, 获得了W/ZnO/BEs存储器结构. 研究了不同的下电极材料对器件电阻开关特性的影响. 研究结果表明, 以不同下电极所制备的器件都具有单极性电阻开关特性. 在低阻态时, ZnO薄膜的导电机理为欧姆传导, 而高阻态时薄膜的导电机理为空间电荷限制电流. 不同下电极与ZnO薄膜之间的肖特基势垒高度对电阻开关过程中的操作电压有较大的影响, 并基于导电细丝模型对不同下电极上ZnO薄膜的低阻态阻值及reset电流的变化进行了解释. 关键词: ZnO薄膜 电阻开关 下电极  相似文献   

19.
For near-future applications of REBa2Cu3O7 (REBCO) coated conductors to electric power cables, transformers and Superconducting Magnetic Energy Storage (SMES), the long taped wires with high performance in the transport properties have been designed and fabricated. Moreover, in order to drastically reduce AC losses in perpendicular field configuration, advanced multifilament YBCO coated conductors (MFYCCs) fabricated with technique of a laser scribing process have been also developed. In the present study, from engineering viewpoints to utilize such advanced conductors, we evaluated the transport and AC loss properties of short MFYCCs with a repaired part or a joint by a diffusion joint technique with the saddle-shaped pickup coil method.  相似文献   

20.
A high temperature superconducting cable may be based on a centrally located cylindrical support, a so-called former. If electrically conductive, the former can contribute to the AC losses through eddy current losses caused by unbalanced axial and tangential magnetic fields. With these measurements we aim at investigating the eddy current losses of commonly used former materials. A one layer cable conductor was wound on a glass fibre reinforced polymer (GFRP) former. By inserting a variety of materials into this, it was possible to measure the eddy current losses of each of the former candidates separately; for example copper tubes, stainless steel braid, copper braid, corrugated stainless steel tubes, etc. The measured data are compared with the predictions of a theoretical model. Our results show that in most cases, the losses induced by eddy currents in the former are negligible. However, for materials with a low resistivity the eddy current losses may become significant, e.g., for high purity Cu or Al.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号