首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用多种X射线衍射技术和磁电阻测量技术研究了不同厚度的La0.8Ca0.2MnO3/SrTiO3 (LCMO/STO)薄膜的应变状态及其对磁电阻性能的影响.结果表明,在STO(001)单晶衬底上生长的LCMO薄膜沿[00l]取向生长.LCMO薄膜具有伪立方钙钛矿结构,随着薄膜厚度的增加,面内晶格参数增加,垂直于面内的晶格参数减小,晶格参数ab相近,略小于c.LC 关键词: X射线衍射 微结构 应变 物理性能  相似文献   

2.
A novel high-performance thermistor material based on Co-doped ZnO thin films is presented. The films were deposited by the pulsed laser deposition technique on Si (111) single-crystal substrates. The structural and electronic transport properties were correlated as a function of parameters such as substrate temperature and Co-doped content for Zn1?x Co x O (x=0.005,0.05,0.10 and 0.15) to prepare these films. The Zn1?x Co x O films were deposited at various substrate temperatures between 20 and 280 °C. A value of 20 %/K for the negative temperature coefficient of resistance (TCR) with a wide range near room temperature was obtained. It was found that both TCR vs. temperature behavior and TCR value were strongly affected by cobalt doping level and substrate temperature. In addition, a maximal TCR value of over 20 %?K?1 having a resistivity value of 3.6 Ω?cm was observed in a Zn0.9Co0.1O film near 260 °C, which was deposited at 120 °C and shown to be amorphous by X-ray diffraction. The result proved that the optimal Co concentration could help us to achieve giant TCR in Co-doped ZnO films. Meanwhile, the resistivities of the films ranged from 0.4 to 270 Ω?cm. A Co-doped ZnO/Si film is a strong candidate of thermometric materials for non-cooling and high-performance bolometric applications.  相似文献   

3.
Perovskite manganite La2/3Ca1/3MnO3 thin films were directly grown on MgO(100), Si(100) and glass substrates by pulsed laser deposition. From the XRD patterns, the films are found to be polycrystalline, single-phase orthorhombic. The metal–insulator transition temperature is 209 K for LCMO/MgO, 266 K for LCMO/Si and 231 K for film deposited on the glass substrate. The conduction mechanism in these films is investigated in different temperature regimes. Low-temperature resistivity data below the phase transition temperature (T P) have been fitted with the relation \( \rho = \rho_{0} + \rho_{2} T^{2} + \rho_{4.5} T^{4.5} \) , indicating that the electron–electron scattering affects the conduction of these materials. The high-temperature resistivity data (T > T P) were explained using variable-range hopping (VRH) and small-polaron hopping (SPH) models. Debye temperature values are 548 K for LCMO/Cg, 568 K for LCMO/Si and 508 K for LCMO/MgO thin films. In all thin films, the best fitting in the range of VRH is found for 3D dimension. The density of states near the Fermi level N (E F) for LCMO/MgO is lower due to the prominent role of the grain boundary in LCMO/MgO and increase in bending of Mn–O–Mn bond angle, which decreases the double exchange coupling of Mn3+–O2–Mn4+ and in turn makes the LCMO/MgO sample less conducting as compared to the other films.  相似文献   

4.
With various pulse laser energy (E pulse), La2/3Ca1/3MnO3:Ag x [La1?x Ca x MnO3 (LCMO):Ag x , x = 0.04, wt%] films were prepared on vicinal cut LaAlO3 substrates by the pulsed laser deposition technique. It is found that laser-induced voltage (LIV) of LCMO:Ag0.04 films was improved and enhanced by E pulse. With E pulse increasing, figure of merit (F m) and anisotropic Seebeck coefficient (ΔS) of LCMO:Ag0.04 films reached the maximum value of 109.8 mV/ns and 0.29 μV/K for E pulse = 300 mJ. The results suggested that the LIV enhancement of LCMO:Ag0.04 films was due to Seebeck tensor improvement, the high crystallization and oxygen balance in LCMO:Ag0.04 films.  相似文献   

5.
Thin films of La0.7Ca0.3MnO3 were successfully grown epitaxially on (100) single-crystal SrTiO3 substrates by excimer-laser assisted metal-organic deposition. Initial amorphous LCMO thin films were obtained by metal-organic deposition at 500 °C. Crystallization and epitaxial growth of the films was achieved using a KrF pulsed laser irradiation while the film/substrate samples were kept at 500 °C. High resolution transmission electron microscopy observations on cross-sections demonstrate the formation mechanism of the epitaxial films. The crystallization process starts at the LCMO/STO interface and grows by increasing the number of laser shots. A fully crystallized film was obtained after 5 min of irradiation. The film/substrate interface was found to be sharp and abrupt. The temperature dependence of the resistance R(T) shows various behaviors, starting from insulating to semiconducting and metal–insulator transition material during the formation of the manganite film. The oxygen content was also improved by increasing the irradiation time. Promising values of the temperature coefficient of resistance were obtained from these manganite films for prospect integration in silicon based microbolometric devices. PACS 81.15.-z; 81.15.Np; 73.61.-r; 71.30.+h  相似文献   

6.
Wang  P.  Li  J.  Lang  P. L.  Li  S. L.  Chu  H. F.  Xie  T. Y.  Zheng  D. N. 《Applied Physics A: Materials Science & Processing》2011,102(2):449-455
High quality La2/3Ca1/3MnO4(LCMO) thin films have been deposited on silicon-on-insulator (SOI) substrates only buffered by yt tria-stabilized zirconia (YSZ) by using the pulsed laser deposition (PLD) technique. The results obtained from X-ray diffraction (XRD), reflection high energy electron diffraction (RHEED), scanning electron microscopy (SEM) and magnetization investigations indicate that the LCMO films are highly oriented both in-plane and out-of-plane. The Curie temperature T c is close to 260 K and the insulator–metal (I–M) transition appears around 220 K. The conducting mechanism at low temperatures is dominated by the electron–magnon scattering. A tensile stress from the film–substrate lattice mismatch results in magnetic ‘easy axes’ in the film plane and the magnetic anisotropy energy increases with cooling. A maximum magnetoresistance (MR) is observed near 190 K, with the external magnetic field either parallel or vertical to the LCMO film plane. Moreover, the large intrinsic high-field magnetoresistance (HFMR) and the very small extrinsic low-field magnetoresistance (LFMR) again reveal that the LCMO films on SOI substrates are highly oriented thin films of good crystallinity.  相似文献   

7.
Magnetic bicrystal films and junctions of magnetic La0.67Sr0.33MnO3 (LSMO) and La0.67Ca0.33MnO3 (LCMO) films epitaxially grown on NdGaO3 substrates with the (110) planes of their two parts misoriented (tilted) at angles of 12°, 22°, 28°, and 38° are investigated. For comparison, bicrystal boundaries with a 90° misorientation of the axes of the NdGaO3 (110) planes were fabricated. The directions of the axes and the magnetic anisotropy constants of the films on both sides of the boundary are determined by two independent techniques of magnetic resonance spectroscopy. The magnetic misorientation of the axes in the substrate plane has been found to be much smaller than the crystallographic misorientation for tilted bicrystal boundaries, while the crystallographic and magnetic misorientation angles coincide for boundaries with rotation of the axes. An increase in the magnetoresistance and characteristic resistance of bicrystal junctions with increasing misorientation angle was observed experimentally. The magnetoresistance of bicrystal junctions has been calculated by taking into account the uniaxial anisotropy, which has allowed the contributions from the tunneling and anisotropic magnetoresistances to be separated. The largest tunneling magnetoresistance was observed on LCMO bicrystal junctions, in which the characteristic resistance of the boundary is higher than that in LSMO boundaries.  相似文献   

8.
朱杰  张辉  张鹏翔  谢康  胡俊涛 《物理学报》2010,59(9):6417-6422
采用脉冲激光沉积(PLD)技术在LaSrAlTaO3(LSATO),LaAlO3(LAO)和SrTiO3(STO)的单晶倾斜衬底上成功制备了Pb(Zr0.3Ti0.7)O3(PZT)薄膜,在三种倾斜衬底上生长的PZT薄膜中都首次发现了LIV效应.对PZT/LSATO薄膜在a,c轴两种不同取向择优生长下的LIV效应做了研究,发现在薄膜c轴取向择优生长 关键词: 激光感生电压效应 铁电薄膜 薄膜生长取向 原子层热电堆  相似文献   

9.
Tilted La1?x Ca x MnO3 (0.1 ≤ x ≤ 0.7) thin films have been grown on vicinal cut LaAlO3 (100) substrate by pulsed laser deposition. The laser-induced voltage effect was studied at room temperature with the KrF excimer laser using as the thermal source. The relationships between Ca doping level and voltage signal, response time and anisotropy Seebeck coefficient were established. The voltage signal and anisotropy Seebeck coefficient increase at first with increasing Ca doping level, reach a maximum at the same Ca content around x = 0.5, and then decrease. The respond time decreases with the Ca concentration increasing, and changes very little after x = 0.5. The figure of merit F m was also the largest at this doping level, indicating a potential good performance of the photodetector devices. The variation of intrinsic structural and transport anisotropy induced by the change of Ca concentration has been proposed to account for the different LIV effects observed in LCMO thin films.  相似文献   

10.
Ca-doped LaMnO3 (LCMO) thin films have been successfully prepared on SrTiO3 (STO) and [(LaAlO3)0.3-(SrAlTaO6)0.7] (LSAT) substrates using the excimer laser assisted metal-organic deposition (ELAMOD) process. The crystallization and the epitaxial growth of the amorphous metal-organic LCMO thin films have been achieved using a KrF excimer laser irradiation while the substrates were kept at constant temperature of 500 °C. Epitaxial films were obtained using laser fluence in the interval of 50-120 mJ/cm2. The microstructure of the LCMO films was studied using cross-section transmission electron microscopy. High quality of LCMO films having smooth surfaces and sharp interfaces were obtained on both the STO and the LSAT substrates. The effect of the laser fluence on the temperature coefficient of resistance (TCR) was investigated. The largest values of TCR of the LCMO grown on the LSAT and the STO substrates of 8.3% K−1 and 7.46% K−1 were obtained at different laser fluence of 80 mJ/cm2 and 70 mJ/cm2, respectively.  相似文献   

11.
Ferromagnetic La0.7Sr0.3MnO3 (LSMO) and antiferromagnetic La0.33Ca0.67MnO3 (LCMO) layers were grown on SrTiO3 (STO) substrates by the pulsed laser deposition technique. LSMO films had rougher surfaces and larger grain sizes than LCMO films. Fully strained bilayers, in which each layer was as thin as 10 nm, were prepared by changing their stacking sequences, i.e. LSMO/LCMO/STO and LCMO/LSMO/STO. The former had higher TC (350 K) than the latter (300 K), and exchange bias effects were only observed in the former bilayers. This revealed that microstructures could play an important role in the transport and magnetic properties of manganese oxide thin films.  相似文献   

12.
Co-doped ZnO epilayer films were grown by pulsed laser deposition (PLD) on vicinal cut silicon and sapphire substrates. Changes in deposition time were observed as a moderate effect on the quality of the films, and the influence of the thickness on thermoelectric signals from Zn0.9Co0.1O thin films were discussed. The effect of one of the main deposition parameters, the deposition time, on the crystallinity and electron mobility properties of the Zn0.9Co0.1O thin films grown on sapphire was investigated by means of X-ray diffraction (XRD) and laser-induced voltage (LIV) effect. It shown that the XRD rocking curve full-width half-maximun (FWHM) decreased as time increasing, and the LIV signals were observed along the tilting angle of the substrate orientation when the pulsed KrF excimer laser of 248 nm were irradiated on the films. When the films illuminated in pulse lasers, the highest signals occurred in the films with best crystalline quality, and the signals were higher in the films grown on sapphire than those on silicon substrates. It suggested that the electrical resistivity and electron mobility have close relations with not only the crystallinity but also with the interface of the thin films.  相似文献   

13.
(001) preferentially oriented PbTiO3 thin films have been grown on (110) NdGaO3 substrates by metalorganic chemical vapor deposition (MOCVD) under reduced pressure at 650°C. Atomic force microscopy (AFM) surface morphology of the as-deposited film showed the evidence of layer-by-layer growth in the MOCVD process. By using a grazing-angle scattering technique, a highly resolved Raman spectrum of the epitaxial PbTiO3thin film on perovskite substrate was first time recorded. Other microstructure of the film, such as the element composition, the c-domain percentage and the epitaxial nature, were investigated by Rutherford backscattering spectrometry (RBS), x-ray θ ? 2θ diffraction patterns and x-ray φ scans, respectively. All measurements indicate that NdGaO3single crystal, which used to be a substrate for the growth of high-Tc superconducting thin films, is also suitable for the growth of high quality PbTiO3 thin film. This indicates the promising use of the NdGaO3 for the integration of ferroelectric thin films and superconducting electrodes.  相似文献   

14.
We have grown hematite (αFe 2 O 3) thin films on stainless steel and (001)-silicon single-crystal substrates by RF magnetron sputtering process in argon atmosphere at substrate temperatures from 400 to 800°C. Conversion Electron Mössbauer (CEM) spectra of the sample grown on stainless steel at 400°C exhibit values for hyperfine parameter characteristic of bulk hematite phase in the weak ferromagnetic state. Also, the relative line intensity ratio suggests that the magnetization vector of the polycrystalline film is aligned preferentially parallel to the surface. The X-ray diffraction (XRD) pattern of the polycrystalline thin film grown on steel substrates also corresponds to αFe 2 O 3. The samples were also analyzed by Atomic Force Microscopy (AFM), those grown on stainless steel reveal a morphology consisting of columnar grains with random orientation, given the inhomogeneity of the substrate surface.  相似文献   

15.
ZnO thin films have been grown on thin Si3N4 membranes and (001) sapphire substrates by an ultraviolet-assisted pulsed laser deposition (UVPLD) technique. The microstructure of the films grown on Si3N4 membranes, investigated by transmission electron microscopy, showed that crystalline and textured films can be grown by UVPLD at a substrate temperature of only 100 °C. For deposition temperatures higher than 400 °C, ZnO films grown on sapphire substrates were found to be epitaxial by Rutherford backscattering (RBS) and X-ray diffraction measurements. The minimum yield of channeling RBS spectra recorded from films deposited at 550 °C was around 2% and the FWHM of the rocking curve for the (002) diffraction peak was 0.17°; these values are similar to those recorded from ZnO layers grown by conventional PLD at 750 °C.  相似文献   

16.
We have carried out extensive studies on the self-injection problem in barrierless heterojunctions between La0.7Ca0.3MnO3 (LCMO) and YBa2Cu3O7-δ (YBCO) thin films. The heterojunctions were formed in situ by sequentially growing LCMO and YBCO films on 〈100〉 LaAlO3 (LAO) substrate using a pulsed laser deposition (PLD) system. YBCO micro-bridges with 64 μm width were patterned both on the LAO (control) and LCMO side of the substrate. Critical current, I c, was measured at 77 K on both the control side as well as the LCMO side for different YBCO film thickness. It was observed that while the control side showed a J c of ∼ 2 × 106 A/cm2, the LCMO side showed about half the value for the same thickness (1800 ?). The difference in J c indicates that a certain thickness of YBCO has become ‘effectively’ normal due to self-injection. From the measurement of J c at two different thicknesses (1800 ? and 1500 ?) of YBCO films both on the LAO as well as the LCMO side, the value of self-injection length (at 77 K) was estimated to be ∼ 900 ?. To the authors’ best knowledge, this is the first time that self-injection length has been quantified. A control experiment carried out with LaNiO3 deposited by PLD on YBCO did not show any evidence of self-injection.  相似文献   

17.
We have developed a high-performance laser energy meter based on anisotropic Seebeck effect in a strongly correlated electronic (SCE) thin film. SCE thin films, typically represented by high-temperature superconductor (HTS) cuprate and colossal magnetoresistance (CMR) manganite thin films, demonstrate tremendous anisotropic Seebeck effect. In this study, a La2/3Ca1/3MnO3 thin film grown on a tilted LaAlO3 substrate is tested with the fundamental, the second, the third, and the fourth harmonics (1064, 532, 355, 266 nm, respectively) of a Q-switched Nd:YAG laser over a wide range of temperatures from room temperature to 16 K. The peak-value of the laser-induced thermoelectric voltage signal shows a good linear relationship with the laser energy per pulse in the measured wavelength and temperature ranges. The combined advantages over other commercial laser detectors such as nanosecond-order response and spectrally broad and flat response over a wide range of temperatures, in situ real-time measurement, and energy savings, make the device an ideal candidate for next-generation laser detectors and laser power/energy meters.  相似文献   

18.
The nanocrystalline ZnO thin films were deposited by pulsed laser deposition on quartz and i-Si (100) substrates at different substrate temperatures (473 K–873 K) and at different mixed partial pressures (0.05, 0.01, and 0.5 mbar) of Ar+O2. The structural studies from XRD spectra reveals that the films deposited at 0.05 mbar and at lower substrate temperatures were c-axis oriented with predominant (002) crystallographic orientation. At 873 K along with (002) orientation, additional crystallographic orientations were also observed in case of films deposited at 0.01 and 0.5 mbar pressures. The composition of Zinc and Oxygen in ZnO films from EDAX reveals that the films deposited at lower partial pressures were have high at.% of O2 whereas higher partial pressures and substrate temperatures had high at.% Zn. The surface microstructure of the films show that the films deposited at lower partial pressures (0.05 mbar ) and at lower substrate temperatures (473 K) were found to have nanoparticles of size 15 nm where as films deposited at 873 K have nanorods. The length of these nanorods increases with increasing Ar+O2 partial pressure to 0.5 mbar. The optical energy gap of the film deposited at lower partial pressure and substrate temperature was 3.3 eV and decrease with the increase of substrate temperatures. The films deposited at 0.5 mbar and at 873 K emitted an intense luminescence at a wavelength of 390 nm. The measured thickness of deposited films by spectroscopic ellipsometry is around 456 nm.  相似文献   

19.
 采用电子束蒸发方法在大面积玻璃基底和钽基底上沉积六硼化镧薄膜阴极。分别对玻璃基底上沉积的六硼化镧薄膜的生长取向、附着力与不同蒸发角度(0°, 30°,45°和60°)的关系进行了研究;对钽基底上沉积的六硼化镧薄膜阴极的逸出功进行了研究。结果表明:在基底温度为250 ℃时,制备的六硼化镧薄膜具有(100)晶面择优生长的特点;蒸发角度为45°时,六硼化镧薄膜(100)晶面的晶格常数与靶材相差最小,晶粒较小;根据优化的工艺制备的六硼化镧薄膜阴极的逸出功为2.56 eV。  相似文献   

20.
《Current Applied Physics》2019,19(5):563-569
In this communication, we have successfully fabricated mixed valent La0.7Ca0.3MnO3 (LCMO) manganite based (i) ZnO/LCMO/LAO and (ii) LMO/LCMO/LAO (LMO: LaMnO3–d thin layer; LAO: LaAlO3 substrate) thin film heterostructures using chemical solution deposition (CSD) method. 100 nm LCMO layer was initially grown on single crystalline (100) LAO substrate followed by the growth of 50 nm ZnO and LMO layers separately on the two different heterostructures. In the present study, upper layers of ZnO and LMO were intentionally prepared at 700 °C for 12 h under air environment, thereby some naturally created oxygen vacancies are expected to be present in their lattices. Presence of oxygen vacancies makes ZnO and LMO layers as n–type oxides in the heterostructures. Temperature dependent current–voltage (I–V) characteristics and interface resistivity (under different applied electric fields across interface only) were carried out to understand their charge transport behavior. A strong effect of electric field on the resistivity behavior has been observed due to a reasonable electrically polarizable (active) nature of ZnO and LMO thin layers. Zener double exchange (ZDE) polynomial law has been employed to understand various scattering processes as source of resistivity across, both, ZnO/LCMO and LMO/LCMO interfaces. Transport properties and charge conduction mechanisms have been discussed and compared for both the interfaces in the context of interface state and barrier between electrically active layer and LCMO film. Also, power consumption criteria have been discussed in detail for the presently studied heterostructures for their practical device applications such as field effect devices, memory devices, read–write head devices or any other spintronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号