首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Gas bubbles in the blood are believed responsible for the symptoms of decompression sickness. It is desired to design a system which will detect these bubbles if they appear in the circulation of a man undergoing decompression. Such bubbles will produce a signal on an ultrasonic Doppler flow-meter. A foetal heart detector was used for these experiments. The probe was placed on the chest over the heart. A guinea pig underwent a severe decompression and the Doppler signals were recorded.  相似文献   

2.
B A Hills  D C Grulke 《Ultrasonics》1975,13(4):181-184
Two standard Doppler ultrasonic devices, currently used for detecting bubbles in vivo, have been evaluated and compared in vitro using carefully calibrated uniform micro-bubbles rising at terminal velocity through a static aqueous medium. Two unexpected findings were observed: (a) the focal length of the transducer apparently decreases for smaller bubble sizes, and (b) a significant horizontal convection current was produced by one of the instruments. When the medium was in motion, it was found that the sensitivity varied markedly with bubble velocity, varying from a minimum detectable diameter of 40 mum at 55 cm/sec to 170 mum at 20 cm/sec. These findings are discussed with regard to the limitations of the Doppler technique for monitoring gas emboli in vivo and as an early warning for decompression sickness in divers.  相似文献   

3.
We demonstrate extended axial flow velocity detection range in a time-domain Doppler optical coherence tomography (DOCT) system using a modified Kasai velocity estimator with computations in both the axial and transverse directions. For a DOCT system with an 8 kHz rapid-scanning optical delay line, bidirectional flow experiments showed a maximum detectable speed of >56 cm/s using the axial Kasai estimator without the occurrence of aliasing, while the transverse Kasai estimator preserved the approximately 7 microm/s minimum detectable velocity to slow flow. By using a combination of transverse Kasai and axial Kasai estimators, the velocity detection dynamic range was over 100 dB. Through a fiber-optic endoscopic catheter, in vivoM-mode transesophageal imaging of the pulsatile blood flow in rat aorta was demonstrated, for what is for the first time to our knowledge, with measured peak systolic blood flow velocity of >1 m/s, while maintaining good sensitivity to detect aortic wall motion at <2 mm/s, using this 2D Kasai technique.  相似文献   

4.
多普勒测风激光雷达是大气风场探测的重要手段之一。通过检测风速导致的大气后向散射谱的多普勒频移从而实现风速的探测。由于受鉴频器本身特性的影响,高灵敏度与大动态范围的探测一直是大气风场探测的难点。提出采用双光纤Mach-Zehnder干涉仪(FMZI)作为多普勒激光雷达的鉴频器件,设计两路不同动态范围及风速探测灵敏度的FMZI鉴频器同时对大气回波信号进行鉴频。采用小光程差(13.7 cm)、大动态范围(±100 m·s-1)鉴频光路FMZI-2对风速区间进行定位,大光程差(74.8 cm)、高探测灵敏度(2.62%/(m·s-1))的鉴频光路FMZI-1进行风速精细探测,从而实现大动态范围高灵敏度的风场探测。利用标准大气模型对不同参数条件下的系统灵敏度、系统探测的信噪比及风速误差进行仿真分析。结果表明,该系统可以实现±100 m·s-1大动态范围内风速误差小于1 m·s-1的大气风场探测,为大动态范围高灵敏度测风激光雷达的发展进行了有益的探索。  相似文献   

5.
Based on the thermoelastic theory, a finite element model is developed to simulate the process of laser inducing ultrasonic field in isotropic cylinders, which can take the temperature dependence of thermal parameters into account. Using the finite element model, we have simulated the ultrasonic fields induced by a pulse laser line source impacting on the generatrix of aluminum cylinders with different diameters. And the intact waveforms of surface acoustic wave (SAW including cylindrical Rayleigh and Whispering gallery (WG) modes) are presented, which are in very good agreement with the calculated and experimental waveforms in other literatures. Furthermore, the dispersion properties of cylindrical Rayleigh waves are analyzed by the method of phase spectral analysis, and the results show that with the increasing frequency, the phase velocity of cylindrical Rayleigh wave rapidly increases to the maximum value, and then gradually decreases to that of plane Rayleigh wave. With the diameter of cylinder decreasing, the maximum value of phase velocity and the corresponding frequency increase.  相似文献   

6.
The velocity components of individual macroparticles (molten droplets) moving through the interelectrode plasma of copper vacuum arc were measured by applying the forward-scattering laser Doppler anemometry method (LDA). The arc was sustained between two cylindrical copper electrodes, 14 mm in diameter and spaced 4 mm apart. Two current waveforms, with rise times to peak currents of 1 and 6 ms and duration of about 5 and 30 ms, respectively, were used in the experiment, while in both cases peak currents were either 1 or 2 kA. Macroparticles traversing through the ellipsoid shaped "probe-volume," which was produced by the intersection of the two He-Ne laser beams, scattered the laser light, through a monochromator, used as a 1.7-A bandpass filter, onto a photomultiplier. The Doppler-frequency component of the photomultiplier was recorded after appropriate filtering and amplification. The macroparticle velocity component obtained from the Doppler frequency was in the plane defined by the illuminating laser beams and directed perpendicularly to the optical axis. Macroparticles were detected during the whole period of the discharge, and their velocity was determined either at the instant of peak current or when the current decreased to 10 percent of its peak value, at several spatial locations inside the discharge volume. The measured macroparticle velocity components ranged from about 10-20 m/s up to about 700 m/s, showing a systematic dependence on the instantaneous value of the arc-current and on the spatial position of the "probe-volume," e. g.  相似文献   

7.
The biocompatible trisacryl particles (TMP) are made of a cross-linked acrylic copolymer. Their inherent acoustic properties, studied for a contrast agent application, have been previously demonstrated in a in vitro Couette device. To measure their acoustic behaviour under circulating blood conditions, the TMP backscatter enhancement was further evaluated on a home-made flow phantom at different TMP doses (0.12-15.6 mg/ml) suspended in aqueous and blood media, and in nude mice (aorta and B16 grafted melanoma). Integrated backscatter (IB) was measured by spectral analysis of the Doppler signals recorded from an ultrasound system (Aplio®) combined with a 12-MHz probe. Doppler phantom experiments revealed a maximal IB of 17 ± 0.88 dB and 7.5 ± 0.7 dB in aqueous and blood media, respectively. IB measured on mice aorta, in pulsed Doppler mode, confirmed a constant maximal value of 7.29 ± 1.72 dB over the first minutes after injection of a 7.8 mg/ml TMP suspension. Following the injection, a 60% enhancement of intratumoral vascularization detection was observed in power Doppler mode. A preliminary histological study revealed inert presence of some TMP in lungs 8 and 16 days after injection.Doppler phantom experiments on whole blood allowed to anticipate the in vivo acoustic behaviour. Both protocols demonstrated TMP effectiveness in significantly increasing Doppler signal intensity and intratumoral vascularization detection. However, it was also shown that blood conditions seemed to shadow the TMP contrast effect, as compared to in vitro observations. These results encourage further investigations on the specific TMP targeting and on their bio-distribution in the different tissues.  相似文献   

8.
Hirata S  Kurosawa MK 《Ultrasonics》2012,52(7):873-879
Real-time distance measurement of a moving object with high accuracy and high resolution using an ultrasonic wave is difficult due to the influence of the Doppler effect or the limit of the calculation cost of signal processing. An over-sampling signal processing method using a pair of LPM signals has been proposed for ultrasonic distance and velocity measurement of moving objects with high accuracy and high resolution. The proposed method consists of cross correlation by single-bit signal processing, high-resolution Doppler velocity estimation with wide measurement range and low-calculation-cost Doppler-shift compensation. The over-sampling cross-correlation function is obtained from cross correlation by single-bit signal processing with low calculation cost. The Doppler velocity and distance of the object are determined from the peak interval and peak form in the cross-correlation function by the proposed method of Doppler velocity estimation and Doppler-shift compensation. In this paper, the proposed method of Doppler-shift compensation is improved. Accuracy of the determined distance was improved from approximately within ±140 μm in the previous method to approximately within ±10 μm in computer simulations. Then, the proposed method of Doppler velocity estimation is evaluated. In computer simulations, accuracy of the determined Doppler velocity and distance were demonstrated within ±8.471 mm/s and ±13.87 μm. In experiments, Doppler velocities of the motorized stage could be determined within ±27.9 mm/s.  相似文献   

9.
Doppler optical coherence tomography (OCT) can image tissue structure and blood flow at micrometer-scale resolution but has limited imaging depth. We report a novel, linear-scanning, needle-based Doppler OCT system using angle-polished gradient-index or ball-lensed fibers. A prototype system with a 19-guage (diameter of approximately 0.9 mm) echogenic needle is constructed and demonstrates in vivo imaging of bidirectional blood flow in rat leg and abdominal cavity. To our knowledge, this is the first demonstration of Doppler OCT through a needle probe in interstitial applications to visualize deeply situated microcirculation.  相似文献   

10.
Retinal blood flow quantification by retinal vessel segmentation with Doppler optical coherence angiography is presented. Vessel diameter, orientation, and position are determined in an en face vessel image and two representative cross-sectional flow images of the vessel. Absolute blood flow velocity is calculated with the help of the measured Doppler frequency shift and determined vessel angle. The volumetric flow rate is obtained with the position and the region of the vessel lumen. The volumetric blood flow rate of retinal arteries before and after a bifurcation is verified in a healthy human eye.  相似文献   

11.
A broadband, O-mode sweeping Doppler reflectometry designed for measuring plasma E×B flow velocity profiles is operated in HL-2A. The main feature of the Doppler reflectometry is its capability to be tuned to any selected frequency in total waveband from 26-40 GHz. This property enables us to probe several plasma layers within a short time interval during a discharge, permitting the characterization of the radial distribution of plasma fluctuations. The system allows us to extract important information about the velocity change layer, namely its spatial localization. In purely Ohmic discharge a change of the E×B flow velocity profiles has been observed in the region for 28 〈 r 〈 30cm if only the line average density exceeds 2.2×10^19 m^-3. The density gradient change is measured in the same region, too.  相似文献   

12.
Maximum blood velocity estimates are frequently required in diagnostic applications, including carotid stenosis evaluation, arteriovenous fistula inspection, and maternal-fetal examinations. However, the currently used methods for ultrasound measurements are inaccurate and often rely on applying heuristic thresholds to a Doppler power spectrum. A new method that uses a mathematical model to predict the correct threshold that should be used for maximum velocity measurements has recently been introduced. Although it is a valuable and deterministic tool, this method is limited to parabolic flows insonated by uniform pressure fields. In this work, a more generalized technique that overcomes such limitations is presented. The new approach, which uses an extended Doppler spectrum model, has been implemented in an experimental set-up based on a linear array probe that transmits defocused steered waves. The improved model has been validated by Field II simulations and phantom experiments on tubes with diameters between 2 mm and 8 mm. Using the spectral threshold suggested by the new model significantly higher accuracy estimates of the peak velocity can be achieved than are now clinically attained, including for narrow beams and non-parabolic velocity profiles. In particular, an accuracy of +1.2 ± 2.5 cm/s has been obtained in phantom measurements for velocities ranging from 20 to 80 cm/s. This result represents an improvement that can significantly affect the way maximum blood velocity is investigated today.  相似文献   

13.
The majority of ultrasonic flowmeters ultilize the Doppler principle so that the measurement depends upon the value of the velocity of sound in the fluid. Variations of the sound velocity can, therefore, introduce measurement errors. This paper describes an ultrasonic method of measuring the flow of liquids and gases using cross-correlation techniques. There is no restriction to the flow and the measurement accuracy is in principle independent of the velocity of sound in the fluid.  相似文献   

14.
Petkovsek R  Horvat D  Mocnik G  Terzić M  Mozina J 《Ultrasonics》2006,44(Z1):e1255-e1258
We propose a method for evaluating the size of the laser-induced breakdown region in water based on the detection and analysis of optodynamic waves. The breakdown region is an optodynamic source of pressure waves that propagate into the surrounding liquid as an ultrasonic pulse. In the experiment the optical breakdown was generated by a standard ophthalmic Nd:YAG laser with a pulse duration of 10 ns and a maximum energy per pulse of 10 mJ. The pulses were detected inside the liquid with a laser-beam deflection probe. The waveforms were captured in the far-field and analyzed. The analysis provides information about the apparent size of the optodynamic source, which is directly related to the size of the breakdown region. The proposed method can be adapted for online monitoring.  相似文献   

15.
寿文德 《应用声学》1994,12(5):4-10
本文概述了B型超声诊断仪声场特性的基本测量和计算方法,提出了一系列典型声压波形的瞬时声压平方函数的时间积分解析表达式,可用来近似计算脉冲声强积分和各种脉冲声强参数.对三种典型超声诊断仪的输出声压波形函数,分别进行数值积分和解析计算,两者的计算结果偏离值均小于±7.0%,表明利用这些公式可使测量过程中的数据采集和计算程序大为简化,在实际应用中具有推广价值.  相似文献   

16.
The possibility for the application of the method of parametric phase conjugation of ultrasonic waves in measuring the velocity of moving objects and flows is investigated. Results of experimental measurements of the Doppler frequency shift are presented for a low-frequency wave (1 MHz) generated by phase-conjugate waves (10 MHz and 11 MHz) propagating in opposite directions in the presence of a moving scatterer. The super high sensitivity of the phase of the low-frequency wave to variations in the spatial position of the scatterer is used to measure the velocity of the object. The presence of flows in the region of propagation of phase-conjugate waves returned leads to an uncompensated Doppler shift of the phase of the phase-conjugate wave at the primary radiation source. The implementation of this feature of ultrasonic phase conjugation for the detection and measurement of the flow velocities in a liquid is demonstrated experimentally.  相似文献   

17.
To correlate the appearance of poststenotic jets on gradient echo images with features of localized Doppler spectra of the jets, we studied an in vitro model of steady flow-through stenoses of 86, 96, and 99% area reduction. As fluids, water and a 40% glycerol solution in water were used. MRI was performed with a 1.5 T whole body imager and gradient echo images were obtained in planes parallel to the direction of flow. Doppler spectra were acquired separately from the MR measurements at 1 cm intervals for a distance of 10 cm downstream from the stenosis. Poststenotic signal void was observed for water and for the 40% glycerol solution only if the mean velocity within the stenosis exceeded a limit of 50–60 cm/sec. On the MR images, the jets could be divided into two segments: A proximal jet segment of uniform width equal to the diameter of the stenosis, followed by a distal jet segment which was characterized by broadening and then dissipating signal void. Except for the 99% stenosis, a high signal intensity core was present within the proximal jet segment. In the proximal jet segment, the Doppler measurements showed a low temporal fluctuation of the maximal flow velocity and only little flow opposite to the main flow direction. In the distal jet segment, the velocity fluctuation and the intensity of reverse flow increased sharply. The high signal intensity core of the jet was associated with a poststenotic zone of constant maximal flow velocity. The results demonstrate a close relationship between characteristic features of poststenotic jets in MRI and pulsed Doppler sonography.  相似文献   

18.
The present work deals with the mapping of an ultrasonic bath for the maximum extraction of mangiferin from Mangifera indica leaves. I3 liberation experiments (chemical transformations) and extraction (physical transformations) were carried out at different locations in an ultrasonic bath and compared. The experimental findings indicated a similar trend in variation in an ultrasonic bath by both these methods. Various parameters such as position and depth of vessel in an ultrasonic bath, diameter and shape of a vessel, frequency and input power which affect the extraction yield have been studied in detail. Maximum yield of mangiferin obtained was approximately 31 mg/g at optimized parameters: distance of 2.54 cm above the bottom of the bath, 7 cm diameter of vessel, flat bottom vessel, 6.35 cm liquid height, 122 W input power and 25 kHz frequency. The present work indicates that the position and depth of vessel in an ultrasonic bath, diameter and shape of a vessel, frequency and input power have significant effect on the extraction yield. This work can be used as a base for all ultrasonic baths to obtain maximum efficiency for ultrasound assisted extraction.  相似文献   

19.
Holwill IL 《Ultrasonics》2000,38(1-8):650-653
Fluid dynamics modelling augmented with routines to simulate acoustic forces on aerosol particles has been used to investigate the potential of combining ultrasonic standing wave fields with optical particle analysis equipment. Simulations of particle dynamics in airstreams incorporating acoustic forces predict that particles in the 1-10 microns diameter range may be effectively focused to the velocity nodes of the standing wave field. Particles move to the velocity nodes within tens of milliseconds for acoustic frequencies of 10-100 kHz and at an acoustic energy density of 100 Jm-3. Larger particles are predicted to move to the velocity antinodes within similar times; however, there is a crossover region at approximately 15-20 microns particle diameter where longer times are predicted due to the competing forces driving particles to the vibration node and antinode. With sufficient transverse flow velocities the models predict that disturbances due to acoustic streaming can be overcome and a useful degree of focusing achieved for the aerosol particles. Results from a model demonstrating sampling and acoustic focusing of 3-9 microns aerosol particles to a 200 microns wide analysis area are presented.  相似文献   

20.
为了提高超声波测距精度,构建了基于AVR单片机的测距及数据处理系统。分析了超声波测距的原理,以AVR单片机为处理器设计了超声波产生和发射电路、超声波接收和信号处理电路以及温度测量和补偿电路等。针对温度对超声波速度的影响,根据超声波速度与温度的关系,设计了超声波速度补偿算法。为了提高回波时间测量准确性,减小随机噪声及空气中其他杂散播干扰的影响,采用均值数字滤波方法,对计数时间进行处理。实测结果表明,在3cm~400cm范围内,超声波测距系统测量数据准确,最大误差为0.66cm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号