首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
By using a new five-parameter formula derived from the WKB approximation, we systematically calculate the spontaneous fission half-lives of even-even nuclei with Z=90—108. The isospin effect is taken into account in the new formula. The calculated half-lives agree well with the experimental data. In addition, we predict the spontaneous fission half-lives of superheavy nuclei with Z=108—114. Our predictions may provide references for future experiments.  相似文献   

2.
The present work is a continuation of our previous paper [J.-G. Deng, et al., Chin. Phys. C, 41:124109(2017)]. In the present work, the α decay half-life of the unknown nucleus296 Og is predicted within the two-potential approach and the hindrance factors of all 20 even-even nuclei in the same region as296 Og, i.e. proton number 82Z 126 and neutron number 152N 184, from250 Cm to294 Og, are extracted. The prediction is 1.09 ms within a factor of 5.12. In addition, based on the latest experimental data, a new set of parameters of α decay hindrance factors for the even-even nuclei in this region, considering the shell effect and proton-neutron interaction,are obtained.  相似文献   

3.
α decay half-lives of some new synthesized superheavy elements, possibly synthesized superheavy elements and decay products are calculated theoretically within the WKB approximation by using microscopic m-nucleus interaction potentials. These nuclear potentials between the α particle and daughter nuclei are obtained by using the double folding integral of the matter density distribution of the α particle and daughter nuclei with a density-dependent effective nucleon-nucleon interaction, in which the zero-range exchange term is supplemented. The calculated α decay half-lives are compared with those of the different models and experimental data. It is shown that the present calculation successfully provides the half-lives of the observed αdecays for some new superheavy elements and therefore gives reliable predictions for α decay of possibly synthesized superheavy elements in future experiments.  相似文献   

4.
α decay half-lives of some new synthesized superheavy elements, possibly synthesized superheavy elements and decay products are calculated theoretically within the WKB approximation by using microscopic α-nucleus interaction potentials. These nuclear potentials between the α particle and daughter nuclei are obtained by using the double folding integral of the matter density distribution of the α particle and daughter nuclei with a density-dependent effective nucleon-nucleon interaction, in which the zero-range exchange term is supplemented. The calculated α decay half-lives are compared with those of the different models and experimental data. It is shown that the present calculation successfully provides the half-lives of the observed decays for some new superheavy elements and therefore gives reliable predictions for α decay of possibly synthesized superheavy elements in future experiments.  相似文献   

5.
Studies on some superheavy nuclei are performed. The α decay energies are calculated by an improved local binding energy formula, and the α decay half-lives are calculated by the Viola-Seaborg formula. Good agreements between theoretical and experimental results are reached.  相似文献   

6.
Studies on some superheavy nuclei are performed. The α decay energies are calculated by an improved local binding energy formula, and the α decay half-lives are calculated by the Viola-Seaborg formula. Good agreements between theoretical and experimental results are reached.  相似文献   

7.
We consider the systematics of α-decay half-lives of super-heavy nuclei versus the decay energy and the total α-kinetic energy. We calculate the half-lives using the experimental Q_α values. The computed half-lives are compared with the experimental data and with existing empirical estimates and are found to be in good agreement.Also, we obtain α-preformation factors from the ratio between theoretical and experimental results for some superheavy nuclei and evaluate the standard deviation. The results indicate the acceptability of the approach.  相似文献   

8.
The shell correction effects on the α decay properties of heavy and superheavy nuclei have been studied in a macroscopic-microscopic manner. The macroscopic part is constructed from the generalized liquid drop model(GLDM), whereas the microscopic part, namely, the shell correction energy, brings about certain effects on the potential barriers and half-lives under a WKB approximation, which is emphasized in this work. The results show that the shell effects play a significant role in the estimation of the α decay half-lives within the actinide region.Predictions of the α decay half-lives are then generated for superheavy nuclei, which will provide useful information for future experiments.  相似文献   

9.
A.Soylu 《中国物理C(英文版)》2019,43(7):074102-074102-11
Spontaneous fission(SF) with a new formula based on a liquid drop model is proposed and used in the calculation of the SF half-lives of heavy and superheavy nuclei(Z = 90–120). The predicted half-lives are in agreement with the experimental SF half-lives. The half-lives of decay(AD) for the same nuclei are obtained by using the Wentzel-Kramers-Brillouin(WKB) method together with Bohr-Sommerfeld(BS) quantization condition considering the isospin-dependent effects for the cosh potential. The decay modes and branching ratios of superheavy nuclei(Z =104-118) with experimental decay modes are obtained, and the modes are compared with the experimental ones and with the predictions found in the literature. Although some nuclei have predicted decay modes that are different from their experimental decay modes, decay modes same as the experimental ones are predicted for many nuclei. The SF and AD half-lives, branching ratios, and decay modes are obtained for superheavy nuclei(Z = 119–120) with unknown decay modes and compared with the predictions obtained in a previous study. The present results provide useful information for future experimental studies performed on both the AD and SF of superheavy nuclei.  相似文献   

10.
α decay energies of 323 heavy nuclei with Z≥82 are evaluated with a macroscopic-microscopic model. In this model, the macroscopic part is treated by the continuous medium model and the microscopic part consists of shell and pairing corrections based on the Nilsson potential. α decay half-lives are calculated by Viola-Seaborg formula. The results of α decay energies and half-lives are compared with experimental values and satisfactory agreement is found. The recoiling effect of the daughter nucleus on α decay half-life is also discussed.  相似文献   

11.
In this study,we investigate the cluster radioactivity(CR) of new superheavy elements with Z=119 and120 based on two successful theoretical methods with modified parameters:the density-dependent cluster model(DDCM) and unified decay formula(UDF).First,we employ the DDCM and UDF to accurately reproduce the experimental half-lives of cluster emissions,which demonstrates the high reliability of our theoretical methods.Then,we systematically predict the probable cluster modes of 293-311 1...  相似文献   

12.
In this contribution,the α preformation factors of 606 nuclei are extracted within the framework of the generalized liquid drop model(GLDM).Through the systematic analysis of the α preformation factors of even-even Po-U isotopes,we found that there is a significant weakening of influence of N=126 shell closure in uranium,which is consistent with the results of a recent experiment [J.Khuyagbaatar et al.,Phys.Rev.Lett.115,242502(2015)],implying that N=126 may not be the magic number for U isotopes.Furthermore,we propose an improved formula with only 7 parameters to calculate α preformation factors suitable for all types of α-decay;it has fewer parameters than the original formula proposed by Zhang et al.[H.F.Zhang et al.,Phys.Rev.C 80,057301(2009)]with higher precision.The standard deviation of the α preformation factors calculated by our formula with extracted values for all 606 nuclei is 0.365 with a factor of 2.3,indicating that our improved formula can accurately reproduce the α preformation factors.Encouraged by this,the α-decay half-lives of actinide elements are predicted,which could be useful in future experiments.Notably,the predicted α-decay half-lives of two new isotopes 220 Np [Z.Y.Zhang,et al.,Phys.Rev.Lett.122,192503(2019)] and 219 Np [H.B.Yang et al.,Phys.Lett.B 777,212(2018)] are in good agreement with the experimental α-decay half-lives.  相似文献   

13.
In this work, the β-stable region for Z 90 is proposed based on a successful binding energy formula.The calculated β-stable nuclei in the β-stable region are in good agreement with the ones obtained by Mo¨ller et al. The half-lives of the nuclei close to the β-stable region are calculated and the competition between α-decay andβ-decay is systematically investigated. The calculated half-lives and the suggested decay modes are well in line with the experimental results. The decay modes are mostly β--decay above the β-stable region. Especially for Z 111,all the decay modes are β--decay. Regarding the nuclei above the β-stable region, α-decay and β--decay(α+β-)can occur simultaneously when Z 112. This is a very interesting phenomenon. The competition between α-decay and β-decay is very complex and drastic below the β-stable region. The predictions for half-lives and decay modes of the nuclei with Z =107–110 are presented in detail.  相似文献   

14.
Radioactive decay of super heavy nuclei via the emission of α-particles has been studied theoretically in the preformed cluster model (PCM). The nucleus-nucleus (NN) potential is obtained by double folding the density distributions of the α-particle and the daughter nucleus with a realistic effective interaction. The M3Y effective interaction, supplemented by a zero-range pseudo-potential for exchange term, is used to calculate the NN potential. The α decay half-lives for 317 nuclei at Z=102–120 are performed in the PCM framework with the theoretical Q values extracted from the Mller-Nix-Kratz and Liran-Marinov-Zeldes mass tables and are compared with the experimental data. The calculated results are also compared with those obtained by using Q values from the Muntian-Hofmann-Patyk-Sobiczewski and Myers-Swiatecki mass estimates.  相似文献   

15.
Radioactive decay of super heavy nuclei via the emission of α-particles has been studied theoretically in the preformed cluster model (PCM). The nucleus-nucleus (NN) potential is obtained by double folding the density distributions of the α-particle and the daughter nucleus with a realistic effective interaction. The M3Y effective interaction, supplemented by a zero-range pseudo-potential for exchange term, is used to calculate the NN potential. The α decay half-lives for 317 nuclei at Z=102 120 are performed in the PCM framework with the theoretical Q values extracted from the MSller-Nix-Kratz and Liran-Marinov-Zeldes mass tables and are compared with the experimental data. The calculated results are also compared with those obtained by using Q values from the Muntian-Hofmann-Patyk-Sobiczewski and Myers-Swiatecki mass estimates.  相似文献   

16.
In this study,based on the Gamow-like model,we systematically analyze two-proton(2p) radioactivity half-lives of nuclei near or beyond the proton drip line.It is found that the calculated results can reproduce experimental data well.Furthermore,using this model,we predict the half-lives of possible 2p radioactivity candidates whose 2p radioactivity is energetically allowed or observed but not yet quantified in the latest table of evaluated nuclear properties,i.e.,NUBASE2016.The predicted results are in good agreement with those from other theoretical models and empirical formulas,namely the effective liquid drop model(ELDM),generalized liquid drop model(GLDM),Sreej a formula,and Liu formula.  相似文献   

17.
The α-decay half-lives of a set of superheavy nuclear isotope chain from Z = 105 to 120 have been analyzed systematically within the WKB method, and some nuclear structure features are found. The decay barriers have been determined in the quasi-molecular shape path within the Generalized Liquid Drop Model (GLDM) including the proximity effects between nucleons in a neck and the mass and charge asymmetry. The results are in reasonable agreement with the published experimental data for the alpha decay half-lives of isotopes of charge 112, 114, and 116, of the element 294118 and of some decay products. A comparison of present calculations with the results by the DDM3Y effective interaction and by the Viola-Seaborg-Sobiczewski (VSS) formulae is also made. The experimental α decay half lives all stand in between the GLDM calculations and VSS formula results. This demonstrates the possibility of these models to provide reasonable estimates for the half-lives of nuclear decays by α emissions for the domain of SHN. The half-lives of these new nuclei are thus well tested from the reasonable consistence of the macroscopic, the microscopic, the empirical formulae and the experimental data. This also shows that the present data of SHN themselves are consistent.It could suggest that the present experimental claims on the existence of new elements Z = 110 ~ 118 are reliable.It is expected that greater deviations of a few SHN between the data and the model may be eliminated by further improvements on the precision of the measurements.  相似文献   

18.
Theoretical α-decay half-lives of the heaviest nuclei are calculated using the experimental Qα value. The barriers in the quasi-molecular shape path is determined within a Generalized Liquid Drop Model (GLDM) and the WKB approximation is used. The results are compared with calculations using the DensityDependent M3Y (DDM3Y) effective interaction and the Viola-Seaborg-Sobiczewski (VSS) formulae. The calculations provide consistent estimates for the half-lives of the α decay chains of these superheavy elements. The experimental data stand between the GLDM calculations and VSS ones in the most time.  相似文献   

19.
Theoretical α-decay half-lives of the heaviest nuclei are calculated using the experimental Qα value. The barriers in the quasi-molecular shape path is determined within a Generalized Liquid Drop Model (GLDM) and the WKB approximation is used. The results are compared with calculations using the Density-Dependent M3Y (DDM3Y) effective interaction and the Viola-Seaborg-Sobiczewski (VSS) formulae. The calculations provide consistent estimates for the half-lives of the α decay chains of these superheavy elements. The experimental data stand between the GLDM calculations and VSS ones in the most time.  相似文献   

20.
In this work, the β-stable region for Z≥90 is proposed based on a successful binding energy formula. The calculated β-stable nuclei in the β-stable region are in good agreement with the ones obtained by Möller et al. The half-lives of the nuclei close to the β-stable region are calculated and the competition between α-decay and β-decay is systematically investigated. The calculated half-lives and the suggested decay modes are well in line with the experimental results. The decay modes are mostly β--decay above the β-stable region. Especially for Z≤111, all the decay modes are β--decay. Regarding the nuclei above the β-stable region, α-decay and β--decay (α+β-) can occur simultaneously when Z≥112. This is a very interesting phenomenon. The competition between α-decay and β-decay is very complex and drastic below the β-stable region. The predictions for half-lives and decay modes of the nuclei with Z=107-110 are presented in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号