首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
H Vosoughian  Z Riazi  H Afarideh  G Sarri 《中国物理 B》2017,26(2):25201-025201
The propagation of an intense laser pulse in an under-dense plasma induces a plasma wake that is suitable for the acceleration of electrons to relativistic energies. For an ultra-intense laser pulse which has a longitudinal size shorter than the plasma wavelength, λp, instead of a periodic plasma wave, a cavity free from cold plasma electrons, called a bubble, is formed behind the laser pulse. An intense charge separation electric field inside the moving bubble can capture the electrons at the base of the bubble and accelerate them with a narrow energy spread. In the nonlinear bubble regime, due to localized depletion at the front of the pulse during its propagation through the plasma, the phase shift between carrier waves and pulse envelope plays an important role in plasma response. The carrier–envelope phase(CEP) breaks down the symmetric transverse ponderomotive force of the laser pulse that makes the bubble structure unstable. Our studies using a series of two-dimensional(2D) particle-in-cell(PIC) simulations show that the frequency-chirped laser pulses are more effective in controlling the pulse depletion rate and consequently the effect of the CEP in the bubble regime. The results indicate that the utilization of a positively chirped laser pulse leads to an increase in rate of erosion of the leading edge of the pulse that rapidly results in the formation of a steep intensity gradient at the front of the pulse. A more unstable bubble structure, the self-injections in different positions, and high dark current are the results of using a positively chirped laser pulse. For a negatively chirped laser pulse, the pulse depletion process is compensated during the propagation of the pulse in plasma in such a way that results in a more stable bubble shape and therefore, a localized electron bunch is produced during the acceleration process. As a result, by the proper choice of chirping, one can tune the number of self-injected electrons, the size of accelerated bunch and its energy spectrum to the values required for practical applications.  相似文献   

2.
张枫  黄硕  李晓锋  余芹  顾彦珺  孔青 《物理学报》2013,62(24):242901-242901
在粒子束引导的等离子尾波场加速机制中,为了加速电子获得最大能量,大量研究集中于改变单束牵引粒子束的线度、形状、电荷性质等参数. 综合考虑已有的实验结果,本文提出了一种相比于单束电子牵引更为有效的加速方式,利用双束平行电子束来加速自注入的电子. 通过2.5维粒子程序模拟,发现在牵引电子束具有相同能量、电量、尺寸的条件下,通过双束平行电子束加速得到的电子具有长程加速、高能和准单能性的特性. 同时在空泡内形成了一束独特的回流电子,进一步使得自注入电子具有更好的准直性. 关键词: 电子束尾波场加速 双束平行电子束 粒子模拟  相似文献   

3.
In multielectron bubbles, the electrons form an effectively two-dimensional layer at the inner surface of the bubble in helium. The modes of oscillation of the bubble surface (the ripplons) are influenced by the charge redistribution of the electrons along the surface. The dispersion relation for these charge redistribution modes (‘longitudinal plasmons’) is derived and the coupling of these modes to the ripplons is analysed. We find that the ripplon-plasmon coupling in a multielectron bubble differs markedly from that of electrons on a flat helium surface. An equation is presented relating the spherical harmonic components of the charge redistribution to those of the shape deformation of the bubble.  相似文献   

4.
A new analytical approach for bubble deformation was used for optimization of the electron acceleration in the 3D highly nonlinear laser wake-field regime. Injection of the electron bunch with initial velocity in the bubble was considered in the inhomogeneous plasma with parabolic density ramp. The researchers show that deformation of the bubble shape has an efficient role on the trapping of the electrons in the acceleration region. The influence of the parabolic density ramp on the electron bunch trapping ratio and its mean energy was considered by the numerical method.  相似文献   

5.
基于激光等离子体尾波解析模型,分析了毛细管中激光与等离子体相互作用,数值计算了尾波中基本物理量。计算结果表明:毛细管等离子体尾波幅度与毛细管半径有关,在较小的毛细管中尾波幅度更大。在相同的激光与等离子体参数情况下,与无界等离子体尾波相比较,毛细管等离子体尾波中电子空泡纵向尺度、电场强度峰值、角向自生磁场强度峰值提高了60%,这些特征都表明毛细管等离子体尾波更有利于电子加速。  相似文献   

6.
Bubble levitation in an acoustic standing wave is re-examined for conditions relevant to single-bubble sonoluminescence. Unlike a previous examination [Matula et al., J. Acoust. Soc. Am. 102, 1522-1527 (1997)], the stable parameter space [Pa,R0] is accounted for in this realization. Forces such as the added mass force and drag are included, and the results are compared with a simple force balance that equates the Bjerknes force to the buoyancy force. Under normal sonoluminescence conditions, the comparison is quite favorable. A more complete accounting of the forces shows that a stably levitated bubble does undergo periodic translational motion. The asymmetries associated with translational motion are hypothesized to generate instabilities in the spherical shape of the bubble. A reduction in gravity results in reduced translational motion. It is hypothesized that such conditions may lead to increased light output from sonoluminescing bubbles.  相似文献   

7.
利用二维粒子模拟方法,本文研究了超强激光与泡沫微结构镀层靶相互作用产生强流电子束问题.研究发现泡沫区域产生了百兆高斯级准静态磁场,形成具有选能作用的"磁势垒",强流电子束中的低能端电子在"磁势垒"的作用下返回激光作用区域,在鞘场和激光场的共同作用下发生多次加速过程,从而显著提升高能电子产额.还应用单粒子模型,分析了电子在激光场作用下的运动行为,验证了多次加速的物理机理.  相似文献   

8.
针对SILEX钛宝石激光器参数,采用PIC数值模拟程序VORPAL对激光尾波场加速进行了模拟,得到了电子轨迹及能量数据,进而通过理论计算得到了空泡机制下X射线辐射特性。结果表明,空泡机制下高能电子在空泡中做betatron振荡且多数电子被加速到170 MeV左右;加速能量较低的电子(约100 MeV), 其辐射谱为临界能量约3 keV的类同步辐射谱,发散角约为8 mrad,而能量较高的电子(约170 MeV)对应的光子临界能量约为10 keV。  相似文献   

9.
提出了一种分析气泡远场干涉的理论模型。平行激光束照射到透明介质中的气泡上,折射光束与全反射光束在远场发生干涉形成内密外疏圆环状干涉条纹,推求了两平行出射光线的光程差公式和两光线之间的距离公式,分析了圆环状干涉条纹内密外疏的原因,给出了计算干涉条纹存在区域和最高干涉级的方法。通过干涉方法可以测量气泡的直径,能够用于介质深处气泡尺寸的测量。利用远场干涉对玻璃水箱、平板玻璃、玻璃棱镜中的气泡直径进行了测量,其中玻璃棱镜中气泡直径测量结果与用阿贝比长仪测量结果对比,相对差为0.9%。预期了气泡远场干涉在运动气泡尺寸、泡内气体折射率、透明光疏介质中光密介质球尺寸测量等方面的应用。  相似文献   

10.
微气泡的生成等基础问题制约着鼓泡脱气技术的发展。本文基于对文丘里鼓泡器内流场的研究,对不同雷诺数下的气泡动力特性进行研究,采用大涡模拟和流体体积法相结合的数值模拟方法,对气泡在不同瞬时动态变化流场下的动力特性进行研究,通过分析气泡在不同湍流下的表面积,气泡球度,以及气泡表面所处的湍流应力,计算气泡所受的破坏应力与聚合应力之比,得到气泡的临界韦伯数随气泡在瞬变湍流中的变化过程,分析气泡破碎的临界条件。  相似文献   

11.
The highly nonlinear evolution of the single-mode Rayleigh-Taylor instability (RTI) at the ablation front of an accelerated target is investigated in the parameter range typical of inertial confinement fusion implosions. A new phase of the nonlinear bubble evolution is discovered. After the linear growth phase and a short constant-velocity phase, it is found that the bubble is accelerated to velocities well above the classical value. This acceleration is driven by the vorticity accumulation inside the bubble resulting from the mass ablation and vorticity convection off the ablation front. While the ablative growth rates are slower than their classical values in the linear regime, the ablative RTI grows faster than the classical RTI in the nonlinear regime for deuterium and tritium ablators.  相似文献   

12.
Laser wake field acceleration: the highly non-linear broken-wave regime   总被引:2,自引:0,他引:2  
We use three-dimensional particle-in-cell simulations to study laser wake field acceleration (LWFA) at highly relativistic laser intensities. We observe ultra-short electron bunches emerging from laser wake fields driven above the wave-breaking threshold by few-cycle laser pulses shorter than the plasma wavelength. We find a new regime in which the laser wake takes the shape of a solitary plasma cavity. It traps background electrons continuously and accelerates them. We show that 12-J, 33-fs laser pulses may produce bunches of 3×1010 electrons with energy sharply peaked around 300 MeV. These electrons emerge as low-emittance beams from plasma layers just 700-μm thick. We also address a regime intermediate between direct laser acceleration and LWFA, when the laser-pulse duration is comparable with the plasma period. Received: 12 December 2001 / Published online: 14 March 2002  相似文献   

13.
微槽群内汽泡动力学行为对接触线的影响   总被引:1,自引:0,他引:1  
针对沸腾情形下毛细微槽群热沉内汽泡对汽液固三相接触线的影响,进行了可视化实验研究。研究结果表明:汽泡动力学行为会直接导致微槽群内三相接触线的形状变化,从而引起蒸发薄液膜的厚度、面积以及汽液界面曲率等对薄液膜的蒸发换热特性有重要影响的物理量的变化。实验证实了在开放式微细尺度槽群结构热沉中,固有弯月面区域里的沸腾与扩展弯月...  相似文献   

14.
Bubble population phenomena in acoustic cavitation   总被引:11,自引:0,他引:11  
Theoretical treatments of the dynamics of a single bubble in a pressure field have been undertaken for many decades. Although there is still scope for progress, there now exists a solid theoretical basis for the dynamics of a single bubble. This has enabled useful classifications to be established, including the distinction between stable cavitation (where a bubble pulsates for many cycles) and transient cavitation (where the bubble grows extensively over time-scales of the order of the acoustic cycle, and then undergoes an energetic collapse and subsequent rebound and then, potentially, either fragmentation, decaying oscillation or a repeat performance). Departures from sphericity, such as shape and surface oscillations and jetting, have also been characterized. However, in most practical systems involving high-energy cavitation (such as those involving sonochemical, biological and erosive effects), the bubbles do not behave as the isolated entities modelled by this single-bubble theory: the cavitational effect may be dominated by the characteristics of the entire bubble population, which may influence, and be influenced by, the sound field.

The well established concepts that have resulted from the single-bubble theory must be reinterpreted in teh light of the bubble population, an appreciation of population mechanisms being necessary to apply our understanding of single-bubble theory to many practical applications of ‘power’ ultrasound. Even at a most basic level these single-bubble theories describe the response of the bubble to the local sound field at the position of the bubble, and that pressure field will be influenced by the way sound is scattered by neighbouring bubbles. The influence of the bubble population will often go further, a non-uniform sound field creating an inhomogeneous bubble distribution. Such a distribution can scatter, channel and focus ultrasonic beams, can acoustically shield regions of the sample, and elsewhere localize the cavitational activity to discrete ‘hot spots’. As a result, portions of the sample may undergo intense sonochemical activity, degassing, erosion, etc., whilst other areas remain relatively unaffected. Techniques exist to control such situations where they are desirable, and to eliminate this localization where a more uniform treatment of the sample is desired.  相似文献   


15.
Electron acceleration in the laser-plasma bubble appeared to be the most successful regime of laser wake field acceleration in the last decade. The laser technology became mature enough to generate short and relativistically intense pulses required to reach the bubble regime naturally delivering quasi-monoenergetic bunches of relativistic electrons. The upcoming laser technology projects are promising short pulses with many times more energy than the existing ones. The natural question is how will the bubble regime scale with the available laser energy. We present here a parametric study of laser-plasma acceleration in the bubble regime using full three dimensional particle-in-cell simulations and compare numerical results with the analytical scalings from the relativistic laser-plasma similarity theory.  相似文献   

16.
孙涛  刘志斌  范伟  秦海杰 《计算物理》2019,36(6):659-664
应用格子Boltzmann相变模型,在三维空间研究蒸汽泡在过热液体中生长、上升和变形等动力学行为.为研究传热传质对蒸汽泡运动的影响,对比模拟相同条件下气泡在等温环境中上升的物理过程.结果表明:蒸汽泡在过热液体中上升发生的变形程度较小,意味着相变对蒸汽泡的影响和表面张力一样使汽泡保持初始的形状.蒸汽泡在过热液体中的上升速度较小,说明随着汽泡生长拖拽力的影响比浮力大.蒸汽泡生长率在初始阶段达到最大值,随后会趋于一个恒定的值.随着汽泡体积增大和上升速度的增加,其对流场的扰动也越来越剧烈.蒸汽泡生长和上升引起的对流运动对温度场的演化造成很大的影响.  相似文献   

17.
黄仕华  吴锋民 《物理学报》2008,57(12):7680-7684
采用五阶修正的聚焦激光光场方程模拟研究了由Singh提出的在电子和激光脉冲作用尾部阶段施加外场的加速方案,将Singh方案中采用的外加磁场改成了外加电场,并且考虑了光束的纵向电场和光束衍射效应.模拟结果显示,电子可以从加速相位阶段被外场导入下一个加速相位阶段而不进入减速相位阶段,因此电子能获得比不加外场方案更高的净能增益. 关键词: 强激光 激光加速  相似文献   

18.
This paper reports on an experimental study of the splitting instability of an air bubble a few centimetres in diameter placed in a sealed cylindrical cell filled with liquid and submitted to vertical oscillations. The response of the bubble to the oscillations is observed with a high-speed video camera. It is found that the bubble dynamics is closely associated with the acceleration of the cell Γ. For small acceleration values, the bubble undergoes minor shape deformations. With increasing acceleration values, these deformations are amplified and for sufficiently large Γ the bubble becomes toroidal. The bubble may then become unstable and split into smaller parts. The onset of bubble division is studied and its dependency on physical parameters such as the fluid viscosity, the fluid surface tension and the initial size of the bubble is presented. It is found that the criterion for the bubble splitting process is associated with a threshold based on the acceleration of the oscillations. Above this threshold, the number of bubbles present in the cell is observed to grow until a final steady state is reached. Data analysis reveals that the final bubble size may be characterized in terms of Bond number.  相似文献   

19.
Bubbles and dissolved gases in liquids greatly influence the performance of fluid power systems, coating solutions, plants in the food industry and so on. To eliminate bubbles from working fluids and to prevent degradation of liquids as well as to avoid possible damage of fluid components is an important engineering issue. Recently one of the authors, Ryushi Suzuki, has developed a new device using swirling flow with the capability of eliminating bubbles and of decreasing dissolved gases in fluids. This device is called “Bubble Eliminator.” The swirling flow pattern and pressure distributions in the bubble eliminator greatly influence the effective performance of the bubble removal. In this paper the swirl flow pattern in a transparent bubble eliminator is experimentally visualized and processed as digital images by a high-speed video camera system. Velocity profiles and pressure distributions in the bubble eliminator are calculated and graphically visualized by a three-dimensional numerical simulation. The results of the flow visualization are compared with the numerical simulation. The performance evaluation of the bubble removal effectiveness is numerically and experimentally verified. It is also proposed to augment understanding of 3D flow fields for the swirling flow in the bubble eliminator with scientific flow visualization methods, which combine graphics or real images with haptic displays.  相似文献   

20.
A new principle of acceleration of changed particles and quasineutral plasma beams is proposed and theoretically substantiated. The essence of this new acceleration principle is die utilization of EH-undulated fields, which resemble those of EH free-electron laser pumping systems. Here the charged particles are moving in a superposition of crossed magnetic and electric vortex undulated fields (EH-accelerator). The advantage of such systems is that both negative (electrons) and positive (ions) charged particles are accelerated simultaneously in the same longitudinal direction. In addition to the concept of the EH-accelerators, a new theoretical approach (the theory of hierarchic oscillations and waves) is given further development here. This approach has been used as a basis for the general nonlinear theory of the EH-accelerators and some other similar isochronous electronic devices with long-time interactions. In addition, several new calculation methods are presented, including the method for nonlinear current density calculations (called the averaged current-density equation hierarchic method) and two versions of hierarchic asymptotic algorithms for the integration of Maxwell's equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号