首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
高品质激光尾波场电子加速器   总被引:1,自引:0,他引:1       下载免费PDF全文
激光尾波场电子加速的加速梯度相比于传统直线加速器高了3—4个量级,对于小型化粒子加速器与辐射源的研制具有重要的意义,成为当今国内外的研究热点.台式化辐射源应用需求的提高,特别是自由电子激光装置的快速发展,对电子束流品质提出了更高的要求,激光尾波场电子加速的束流品质和稳定性是目前实现新型辐射源的首要障碍.本文归纳整理了中国科学院上海光学精密机械研究所电子加速研究团队十年来在研制台式化激光尾波场电子加速器过程中采取的方案和取得的进展.例如率先提出了注入级和加速级分离的级联加速方案,通过实验获得了GeV量级的电子束能量;基于级联加速方式利用能量啁啾控制,实验获得世界最高品质的电子束流;通过优化激光系统稳定性和特殊的气体喷流结构,获得稳定的高品质电子束流输出等.这一系列实验结果有利于进一步推进激光尾波场电子加速器的应用.  相似文献   

2.
 用2D3V粒子模拟程序研究了高能质子束驱动的尾波场加速电子的方案,及其在此方案中应用背景等离子体密度的跃变致使等离子体电子自注入加速相区的可能性。粒子模拟结果显示:密度跃变实现了电子的自注入,并且捕获的电子束处于加速相位,等离子体尾波场纵向电场对捕获的电子束起箍缩作用;捕获的电子束随着传输,表现为窄能谱分布;同时随着密度跃变大小的增大,可以增加等离子体电子的捕获。  相似文献   

3.
使用二维粒子模拟程序研究了电子弓形波注入机制中激光脉冲形状对电子俘获效果的影响. 研究结果表明, 激光脉冲时间上升沿陡峭的正扭曲脉冲激发的尾波场强度高, 加速区域分布广, 并且有利于电子获得更高的初速度, 从而推动更多的电子进入尾波场加速相位. 在其他条件相同的情况下, 正扭曲脉冲的电子俘获数目远高于激光脉冲时间分别为高斯形和负扭曲分布的情形, 使得电子束的品质得到改善. 研究结果对于理解尾波场加速中电子注入过程以及获得大电荷量高能电子束具有积极意义. 关键词: 尾波场 电子俘获 时间波形 粒子模拟  相似文献   

4.
用粒子模拟研究了在激光尾波场电子弓形波注入过程中激光脉冲的横向波形对尾波场俘获电子数目的影响, 发现与高斯激光相比, 超高斯形激光更有利于拉动空泡闭合前侧边的电子团向空泡尾部汇聚形成高能量局域化的弓形波, 从而导致更多的电子注入到空泡的加速相, 使得被俘获的电子数目提高近5倍, 且电子束品质得到改善.该研究对于进一步理解尾波场加速中电子注入等有参考价值. 关键词: 尾波场 电子俘获 横向波形 粒子模拟  相似文献   

5.
马燕云  盛政明  陈民  张杰 《物理》2006,35(12):1028-1033
自从激光尾波场加速电子方案提出以来,经过二十多年的理论和实验研究,人们在激光尾波场加速方面已经取得了重大进步,相继在电子束能量、电子单色性等束流性能上取得重大突破.特别是在2004年对电子束的单色性研究取得重大突破,国际上几个著名实验室相继报道了准单能电子束产生的实验观测,掀起了激光尾波场研究的新高潮.对于准单能电子束的产生机制,虽然尚未达成统一认识,但普遍认为空泡加速可能是其中非常重要的机制之一.文章介绍了激光尾波场的基本概念,着重介绍了单能电子束产生的空泡加速模式里的两个关键物理过程:波破和电子的自捕获,同时介绍国际上相关的一些重要实验结果和理论进展.  相似文献   

6.
超短超强激光脉冲在气体等离子体中激发的尾波场加速在过去40年里有了长足的发展,人们已经在厘米加速距离内获得了数GeV的准单能电子加速,激光尾波加速的最高电子能量已经达到8 GeV.为了进一步提升加速电子束的稳定性和品质,多种电子注入方式先后被提出.本文研究了基于锐真空-等离子体边界面的密度跃变注入,着重讨论了不同角度的倾斜边界面对注入电子品质的影响.二维粒子模拟研究表明,与倾角为0°的垂直边界面相比,在合适的倾斜边界角下,第二个尾波空泡内产生的注入电量可以有近三倍的提升,同时偏振方向与入射面平行的驱动激光可以增加第一个空泡内注入电子的电量.根据不同激光入射角度时尾波场中电子自注入的起始位置差异,分析了电子电量与横向振荡增强的原因.这些研究有利于提升基于Betatron运动的尾波场辐射及其应用.  相似文献   

7.
利用二维粒子模拟方法,本文研究了超强激光与泡沫微结构镀层靶相互作用产生强流电子束问题.研究发现泡沫区域产生了百兆高斯级准静态磁场,形成具有选能作用的"磁势垒",强流电子束中的低能端电子在"磁势垒"的作用下返回激光作用区域,在鞘场和激光场的共同作用下发生多次加速过程,从而显著提升高能电子产额.还应用单粒子模型,分析了电子在激光场作用下的运动行为,验证了多次加速的物理机理.  相似文献   

8.
王晓宁  高杰  安维明  王佳  李大章  曾明  鲁巍 《强激光与粒子束》2022,34(4):049002-1-049002-5
针对空泡机制中的双束等离子体尾波电子加速设计,给出了能够快速得到被加速束流在最大加速距离下的相对能散的预测公式。通过加速初始时刻束流纵向分布以及束流所处位置的纵向尾波场可得到束流最终相对能散。该预测公式不仅可应用于驱动束流与被加速束流初始能量相同的情况,还可应用于两个束流初始能量不相同的情况。由该预测公式得到的束流相对能散与被加速束流和驱动束流的初始能量的比值有关,而与两个束流初始能量的数值无关。利用准静态近似的粒子网格模拟程序QuickPIC对理论进行了模拟验证,模拟结果与理论预期结果一致。  相似文献   

9.
相对论皮秒激光与低密度等离子体作用可以通过"激光直接加速"机制获得超有质动力定标率的高能电子,且电荷量可以达到百n C级,在伽马射线产生、正电子产生等方面具有重要应用.然而激光直接加速电子束相比激光尾场加速电子束具有更大的发散角,同时实验观测的横向束分布也不均匀,但是其中的物理机制研究较少.本文通过二维粒子模拟证明,相对论皮秒激光在低密度等离子体中驱动的激光直接加速中,高能电子束会在激光偏振方向分叉,而且电子能量越高这种现象越明显.文章通过细致的理论分析解释了这种高能电子横向分布产生"分叉"结构的内在原因.在激光直接加速的过程中,电子在纵向获得加速的时候,它在激光偏振方向(横向) betatron振荡的动能也会随之增加,当电子的能量足够高时,二者呈线性关系,因此高能电子的横向速度的振幅近似相等,这种相等的振幅最终导致了高能电子束在激光偏振方向的分叉.  相似文献   

10.
盛政明  张杰 《中国物理 C》2006,30(Z1):153-155
随着超短脉冲激光技术的发展, 人们可以在台面尺度获得光强超过1018W/cm2、脉宽小于100fs的超短脉冲激光.超短脉冲激光很容易把静止的电子加速到兆电子伏的能量. 而更重要的是超短激光脉冲可以通过其有质动力激发大振幅的等离子体波(称为激光尾波场), 后者可以在毫米空间尺度把电子加速到上百兆电子伏的能量.文章将介绍激光尾波场加速电子的物理机制和方案、这个领域的最新进展、以及目前存在的问题.  相似文献   

11.
Laser wake field acceleration: the highly non-linear broken-wave regime   总被引:2,自引:0,他引:2  
We use three-dimensional particle-in-cell simulations to study laser wake field acceleration (LWFA) at highly relativistic laser intensities. We observe ultra-short electron bunches emerging from laser wake fields driven above the wave-breaking threshold by few-cycle laser pulses shorter than the plasma wavelength. We find a new regime in which the laser wake takes the shape of a solitary plasma cavity. It traps background electrons continuously and accelerates them. We show that 12-J, 33-fs laser pulses may produce bunches of 3×1010 electrons with energy sharply peaked around 300 MeV. These electrons emerge as low-emittance beams from plasma layers just 700-μm thick. We also address a regime intermediate between direct laser acceleration and LWFA, when the laser-pulse duration is comparable with the plasma period. Received: 12 December 2001 / Published online: 14 March 2002  相似文献   

12.
The trapping and acceleration of nonmonoenergetic electron bunches in a wake field wave excited by a laser pulse in a plasma channel is studied. Electrons are injected into the region of the wake wave potential maximum at a velocity lower than the phase velocity of the wave. The paper analyzes the grouping of bunch electrons in the energy space emerging in the course of acceleration under certain conditions of their injection into the wake wave and minimizing the energy spread for such electrons. The factors determining the minimal energy spread between bunch electrons are analyzed. The possibility of monoenergetic acceleration of electron bunches generated by modern injectors in a wake wave is analyzed.  相似文献   

13.
The first three-dimensional, particle-in-cell (PIC) simulations of laser-wakefield acceleration of self-injected electrons in a 0.84 cm long plasma channel are reported. The frequency evolution of the initially 50 fs (FWHM) long laser pulse by photon interaction with the wake followed by plasma dispersion enhances the wake which eventually leads to self-injection of electrons from the channel wall. This first bunch of electrons remains spatially highly localized. Its phase space rotation due to slippage with respect to the wake leads to a monoenergetic bunch of electrons with a central energy of 0.26 GeV after 0.55 cm propagation. At later times, spatial bunching of the laser enhances the acceleration of a second bunch of electrons to energies up to 0.84 GeV before the laser pulse intensity is significantly reduced.  相似文献   

14.
The formation and acceleration of electron bunches resulting from the self-injection of electrons into the wake wave from the laser pulse moving through a sharp plasma boundary are investigated in one-dimensional geometry. It is shown that electron trapping in the accelerating wakefield is governed by the electron energy and has a threshold character. The acceleration of the trapped bunch is numerically simulated.  相似文献   

15.
Electron acceleration in the laser-plasma bubble appeared to be the most successful regime of laser wake field acceleration in the last decade. The laser technology became mature enough to generate short and relativistically intense pulses required to reach the bubble regime naturally delivering quasi-monoenergetic bunches of relativistic electrons. The upcoming laser technology projects are promising short pulses with many times more energy than the existing ones. The natural question is how will the bubble regime scale with the available laser energy. We present here a parametric study of laser-plasma acceleration in the bubble regime using full three dimensional particle-in-cell simulations and compare numerical results with the analytical scalings from the relativistic laser-plasma similarity theory.  相似文献   

16.
H Vosoughian  Z Riazi  H Afarideh  G Sarri 《中国物理 B》2017,26(2):25201-025201
The propagation of an intense laser pulse in an under-dense plasma induces a plasma wake that is suitable for the acceleration of electrons to relativistic energies. For an ultra-intense laser pulse which has a longitudinal size shorter than the plasma wavelength, λp, instead of a periodic plasma wave, a cavity free from cold plasma electrons, called a bubble, is formed behind the laser pulse. An intense charge separation electric field inside the moving bubble can capture the electrons at the base of the bubble and accelerate them with a narrow energy spread. In the nonlinear bubble regime, due to localized depletion at the front of the pulse during its propagation through the plasma, the phase shift between carrier waves and pulse envelope plays an important role in plasma response. The carrier–envelope phase(CEP) breaks down the symmetric transverse ponderomotive force of the laser pulse that makes the bubble structure unstable. Our studies using a series of two-dimensional(2D) particle-in-cell(PIC) simulations show that the frequency-chirped laser pulses are more effective in controlling the pulse depletion rate and consequently the effect of the CEP in the bubble regime. The results indicate that the utilization of a positively chirped laser pulse leads to an increase in rate of erosion of the leading edge of the pulse that rapidly results in the formation of a steep intensity gradient at the front of the pulse. A more unstable bubble structure, the self-injections in different positions, and high dark current are the results of using a positively chirped laser pulse. For a negatively chirped laser pulse, the pulse depletion process is compensated during the propagation of the pulse in plasma in such a way that results in a more stable bubble shape and therefore, a localized electron bunch is produced during the acceleration process. As a result, by the proper choice of chirping, one can tune the number of self-injected electrons, the size of accelerated bunch and its energy spectrum to the values required for practical applications.  相似文献   

17.
M. Verschl 《Optics Communications》2008,281(17):4352-4357
A novel scheme allowing for relativistic collisions of laser-accelerated electrons is introduced. Two spatially separated electron bunches are driven in opposite directions by two counterpropagating laser pulses until they reach the point of collision which lies within the laser fields. This method can be employed to accelerate electrons to the maximum kinetic energy which can be transferred to charged particles by plane propagating laser fields. Due to the symmetric setup, the center of momentum is at rest with respect to the laser propagation direction such that virtually the whole kinetic energy is available for particle reactions.  相似文献   

18.
Self-injection and acceleration of monoenergetic electron beams from laser wakefield accelerators are first investigated in the highly relativistic regime, using 100 TW class, 27 fs laser pulses. Quasi-monoenergetic multi- bunched beams with energies as high as multi-hundredMeV are observed with simultaneous measurements of side-scattering emissions that indicate the formation of self-channelfing and self-injection of electrons into a plasma wake, referred to as a 'bubble'. The three-dimensional particle-in-cell simulations confirmed multiple self-injection of electron bunches into the bubble and their beam acceleration with gradient of 1.5 GeV/cm.  相似文献   

19.
沈众辰  陈民  张国博  罗辑  翁苏明  远晓辉  刘峰  盛政明 《中国物理 B》2017,26(11):115204-115204
By using three-dimensional particle-in-cell simulations, externally injected electron beam acceleration and radiation in donut-like wake fields driven by a Laguerre-Gaussian pulse are investigated. Studies show that in the acceleration process the total charge and azimuthal momenta of electrons can be stably maintained at a distance of a few hundreds of micrometers. Electrons experience low-frequency spiral rotation and high-frequency betatron oscillation, which leads to a synchrotron-like radiation. The radiation spectrum is mainly determined by the betatron motion of electrons. The far field distribution of radiation intensity shows axial symmetry due to the uniform transverse injection and spiral rotation of electrons. Our studies suggest a new way to simultaneously generate hollow electron beam and radiation source from a compact laser plasma accelerator.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号