首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 176 毫秒
1.
通过固相法合成LED用Zn-Mo1-ySiyO4:Eu3+x红色荧光粉(0.05≤x≤0.30,0≤y≤0.09),讨论了助熔剂、温度等合成条件对Zn1-xMo1-ySiyO4:Eux3+荧光粉发光性质的影响.当烧结温度为800℃时,可以生成ZnMoO4纯相目标产物.由于荧光粉的结晶度和粒径随烧结温度的升高而增大,所以随着烧结温度的升高,样品的发光强度有所提高;当助熔剂Na2CO3的用量约为4%时的样品发射光的强度比未使用助熔剂时明显增强,说明在此体系中,当Eu3+取代Zn2+时,Na2CO3充当助熔剂的同时,Na+起到了电荷补偿作用.荧光光谱实验显示Zn1-xMo1-ySOyO4:Eux3+能够被393和464 nm的紫外光激发,在616 nm处发出强烈的红色荧光.当Eu3+掺杂量约为20%mol时,Zn1-xMo0.97Si0.03O4:Eux3+荧光粉在616 nm处的发光强度达到最大.在引入Si4+离子后能显著增强Zn1-xMoO4:Eux3+的发光强度,组成为Zn0.80 Mo0.97Si0.03O4:Eu0.203+.样品(激发峰值为393 nm)的荧光强度要比Y2O2S:Eu0.053+荧光粉的发光强度强2倍.所以这种荧光物质能够更好地适用于白光LED.  相似文献   

2.
通过固相法合成LED用Zn1-xMo1-ySiyO4∶Eu3+x红色荧光粉(0.05≤x≤0.30, 0≤y≤0.09), 讨论了助熔剂、温度等合成条件对Zn1-xMo1-ySiyO4∶Eu3+x荧光粉发光性质的影响。 当烧结温度为800 ℃时, 可以生成ZnMoO4纯相目标产物。 由于荧光粉的结晶度和粒径随烧结温度的升高而增大, 所以随着烧结温度的升高, 样品的发光强度有所提高; 当助熔剂Na2CO3的用量约为4%时的样品发射光的强度比未使用助熔剂时明显增强, 说明在此体系中, 当Eu3+取代Zn2+时, Na2CO3充当助熔剂的同时, Na+起到了电荷补偿作用。 荧光光谱实验显示Zn1-xMo1-ySiyO4∶Eu3+x能够被393和464 nm的紫外光激发, 在616 nm处发出强烈的红色荧光。 当Eu3+掺杂量约为20% mol时, Zn1-xMo0.97Si0.03O4∶Eu3+x荧光粉在616 nm处的发光强度达到最大。 在引入Si4+离子后能显著增强Zn1-xMoO4∶Eu3+x的发光强度, 组成为Zn0.80Mo0.97Si0.03O4∶Eu3+0.20样品(激发峰值为393 nm)的荧光强度要比Y2O2S∶Eu3+0.05荧光粉的发光强度强2倍。 所以这种荧光物质能够更好地适用于白光LED。  相似文献   

3.
Fu SY  Gu M  Liu XL  Ni C  Liu B  Huang SM 《光谱学与光谱分析》2010,30(9):2317-2320
测量了不同浓度Li+共掺杂下GdTaO4:Eu3+荧光粉材料的X射线衍射谱(XRD)、发射光谱以及红外透射谱,并应用Judd-Ofelt理论,由发射光谱得到Eu3+的光谱跃迁强度参数Ω2.发现Li+共掺杂有助于提高GdTaO4:Eu3+的发光强度,当x=0.06和0.10时,612 nm处的发光强度分别被提升了1.7倍和1.5倍.发光增加的原因是因为Li+的助熔剂效应有效提高了GdTaO4材料的结品性能,并抑制了Cd2O3和Ta2O5杂相的产生,而非所推测的掺Li+引起了配位场对称性降低,从而导致宇称禁戒的放宽.此时Gd0.92-xLixTaO4:Eu3+0.08材料不仪结晶性能较好,而且Gd2O3和Ta2O5杂相也相对较少,故而发光增强最为明显.  相似文献   

4.
Bi3+掺杂对CaMoO4:Eu3+荧光粉发光性质的影响   总被引:1,自引:0,他引:1  
通过微乳液-水热法制备了CaMoO4∶Eu3+和CaMoO4∶Eu3+,Bi 3+两种红色荧光粉,并对样品进行表征,研究其结构、颗粒形貌及发光性质。结果表明,所制样品为白钨矿结构,属于四方晶系。SEM显示所制纳米粒子是四方片状结构,颗粒大小为1.5~2.5μm。光致发光(PL)光谱显示,Eu3+摩尔浓度为5%时616nm发射峰最强,对应于Eu3+的5 D0→7 F2电子偶极跃迁;随CaMoO4∶xEu3+荧光粉中Eu3+掺杂浓度变化,导致色度坐标(CIE)值由橙黄色(0.514,0.537)变化到白色(0.339,0.333);在CaMoO4∶5%Eu3+,yBi 3+红色荧光粉中,由于Bi 3+对Eu3+的敏化作用,使其发光强度增强,当Bi 3+浓度为3%时,发光强度最高;随着Bi 3+掺杂浓度的增加,CaMoO4∶5%Eu3+,yBi 3+荧光粉由橙黄色(0.497,0.347)调节到红色(0.585,0.349)。  相似文献   

5.
采用CaCO3,MgO,SiO2,Eu2O3原料,通过高温固相法制备了Ca3Mg3Si4O14:Eu2+荧光粉.通过XRD图谱和PL光谱图,研究了Eu的掺杂浓度与助溶剂(NH4Cl,BaF2)对Ca3Mg3Si4O14:Eu2+荧光粉结构、发光性能和热稳定的影响.XRD图谱对比结果表明,制备的Ca3Mg3Si4O14:Eu2+荧光粉XRD图与理论计算得到的图谱几乎一致.Ca3Mg3Si4O14:Eu2+荧光粉在360~450 nm有很强的激发强度,并且在440 nm激发下发射峰值波长为530 nm的发射光.随着Eu2+离子浓度的增加,发射光谱出现了红移,且在Eu2+离子浓度约为6%时发生了浓度猝灭现象.当添加NH4Cl和BaF2作为助溶剂,Ca3Mg3Si4O14:Eu2+荧光粉的发光强度有一定提高.与未添加助溶剂的Ca3Mg3Si4O14:Eu2+荧光粉的发光强度相比,添加NH4Cl助溶剂后发光强度增加了70%.此外,当温度升高至150 ℃时,Ca3Mg3Si4O14:Eu2+荧光粉和商用绿色荧光粉的发光强度分别降低了7.6%和14%,表明Ca3Mg3Si4O14:Eu2+荧光粉具有良好的热稳定性.这些发光性能均表明Ca3Mg3Si4O14:Eu2+荧光粉是是一种可应用于固态照明的有前景的绿色荧光粉.  相似文献   

6.
采用微波加热固相法合成了Mg2+、Zn2+掺杂CaWO4∶Eu3+荧光粉。利用XRD对样品的晶体结构进行表征,通过荧光分光光度仪对样品的激发光谱、发射光谱和能级寿命进行检测和分析。结果表明,Mg2+、Zn2+、Eu3+掺杂CaWO4不影响CaWO4基质的四方晶相。395nm激发下,与CaWO4∶2%Eu3+样品比较,分别掺杂0.5%的Mg2+或Zn2+的样品发光强度提高了1.3倍和2.1倍;与3%Mg2+或3%Zn2+掺杂CaWO4∶2%Eu3粉体发光比较,当Eu3+浓度增加为3%时,粉体的发光强度分别提高了7.3倍和14.8倍;与CaWO4∶3%Eu3+样品比较,3%的Mg2+或Zn2+掺杂后的样品光强分别提高了1.2倍和1.3倍。262nm比395nm激发同一样品的Eu3+的5D0能级寿命有所增加。与单掺2%Eu3+样品比较,随着Mg2+或Zn2+掺杂浓度增加,样品荧光寿命先增加后减小。同样激发波长下,与Mg2+或Zn2+掺杂CaWO4∶2%Eu3+样品荧光寿命相比,Eu3+浓度增加为3%时,样品的荧光寿命明显变短。  相似文献   

7.
二氧化锆纳米材料中Eu3+的发光特性   总被引:5,自引:3,他引:2       下载免费PDF全文
研究了掺1mol%Eu3+的二氧化锆纳米材料随退火温度变化的发光性质,得到退火温度为600和800℃的样品中Eu3+的5D0→7F2发射在604nm处,这种现象不多见. 几种经不同退火温度处理的纳米材料样品在紫外光的照射下,稀土离子Eu3+的5D0→7F2发射的发光逐渐增强, 颗粒大的样品发光强度增加得慢,颗粒小的样品发光强度增加得快.  相似文献   

8.
采用高温固相法合成了适合近紫外光、蓝光激发的K2ZnSiO4∶Eu3+红色荧光粉,研究了该荧光粉的发光特性。XRD结果显示,所合成的荧光粉主晶相为K2ZnSiO4。样品的激发光谱由O2-→Eu3+电荷迁移带(200~350nm)和Eu3+离子的特征激发峰(350~500nm)组成,最强峰位于396nm,次强峰位于466nm。在396nm和466nm激发下,样品均呈多峰发射,分别由Eu3+离子的5D0→7FJ(J=0,1,2,3,4)能级跃迁产生,其中619nm处峰值最大。增加Eu3+离子的掺杂浓度,荧光粉的发光逐渐增强。在实验测定的浓度范围内,未出现浓度猝灭现象。不同Eu3+浓度样品的色坐标均位于色品图红光区,非常接近NTSC标准。  相似文献   

9.
采用高温固相法合成Sr3B2O6∶Eu3+,Li+红色荧光粉,考察了激活剂Eu3+和电荷补偿剂Li+浓度对Sr3B2O6∶Eu3+,Li+荧光粉发光性能的影响。结果表明:适量掺杂Eu3+、Li+离子并不改变Sr3B2O6的结构。当Eu3+掺杂量为4%、Li+的掺杂量为8%时,在900℃下灼烧2 h可以得到发光性能最佳的Sr2.9B2O6∶0.04Eu3+,0.08Li+红色荧光粉。以394 nm的近紫外光激发时,Sr3B2O6∶Eu3+,Li+荧光粉发射出红光,对应于Eu3+的4f-4f跃迁,其中以614 nm附近的5D0→7F2跃迁发光最强,是一种有潜力用于白光LED的红色荧光粉。  相似文献   

10.
采用高温固相法制备系列红色荧光粉Naz Ca1-x-2y-zBiyMoO4 ∶ Eu3+x+y (y,z=0,x=0.24,0.26,0.30,0.34,0.38; x=0.30,y=0.01,0.02,0.03,0.04,0.05,0.06,0.07,z=0; x=0.30,y=0.04,z=0.38).用X射线粉末衍射(XRD)法测试了所制样品晶相结构.采用荧光光谱仪对样品的发光性能进行了表征,结果表明:当Eu3+单掺杂量浓度x=0.30时,荧光粉(Ca0.70 MoO4∶Eu3+0.30)的发光强度最强;当Eu3+-Bi3+共掺杂量浓度y=0.03时,电荷迁移带(CTB)强度达到最强,而对于Eu3+特征发射峰,当共掺杂浓度y<0.03时,位于393 nm处的激发峰强度比464 nm强,共掺浓度y>0.03时,464 nm峰比393 nm峰强,共掺浓度为y=0.04时,393和464 nm处两峰位置强度都达到最强.作为电荷补尝剂的Na2 CO3掺入上述荧光粉中后,荧光粉激发和发射强度明显地增强.结果表明,通过调节Bi3+ /Eu3+掺杂比例可以改变位于近紫外光393 nm和蓝光区464 nm处激发光相对强度.  相似文献   

11.
Zn2+掺杂对GdTaO4:Eu3+荧光粉结构和发光性能的影响   总被引:1,自引:0,他引:1  
采用高温固相反应法制备了掺杂不同浓度Zn2 的GdTaO4:Eu0.1荧光粉,研究了Zn2 掺杂对GdTaO4:Eu3 的结晶性能,晶粒形貌和光致发光特性的影响.以X射线衍射(XRD)、扫描电子显微镜(SEM)、激发-发射谱、衰减时间谱等方法对其性能进行了表征.结果表明,Zn2 掺杂可显著提高GdTaO4:Eu3 的光致发光强度,当掺杂浓度x=0.01时,光强被提高至2.7倍,可归因于的Zn2 进入了GdTaO4:Eu3 基质晶格,产生了一定浓度的氧空位以达到电荷平衡,并导致发光中心Eu3 的晶格场发生畸变;当x=0.13时,光强提高至3.2倍,且其衰减时间被缩短至40%,可归因于Zn2 的助熔剂效果;但当x>0.13时,ZnO和GdTa7O19杂相的出现将导致发光强度减弱和衰减时间延长.另外,初步探索表明,Li2CO3和.KCl的共掺杂能进一步提高G.dTaO4:Eu0.1,Zn0.13的发光强度.  相似文献   

12.
采用溶胶-凝胶法制备了Sr2SiO4∶Eu3+发光材料.测量了Sr2SiO4∶Eu3+材料的激发与发射光谱,发射光谱主峰位于618 nm处;监测618 nm发射峰时,所得材料的激发光谱主峰分别为320 nm、397 nm、464 nm和518 nm.研究了Sr2SiO4∶Eu3+材料发射峰强度随电荷补偿剂Li+、Na+和K+掺杂浓度的变化情况.结果显示,随电荷补偿剂浓度的增大,材料发射峰强度均表现出先增大后减小的趋势,但不同电荷补偿剂下,材料发射峰强度最大处对应的补偿剂浓度不同,补偿剂Li+、Na+和K+的浓度分别为8 mol%、7.5 mol%和7 mol%.  相似文献   

13.
采用水热合成方法添加KOH在SiO2颗粒表面包覆Mn2+掺杂纳米Zn2SiO4,通过X射线衍射(XRD)仪、扫描电子显微镜(SEM)、能谱、光致发光(PL)光谱仪对产物的晶体结构、形貌及光学性能进行表征,并对Zn2SiO4晶体在水热反应过程中的反应机制进行了讨论。XRD测试结果表明:220℃水热条件下,添加少量KOH,反应不同时间后,可在石英砂表面生成一层Zn2SiO4;SEM照片显示所生成的Zn2SiO4为六棱柱形,并且不同反应条件下Zn2SiO4的包覆程度不同。反应产物经光致发光性能研究表明:Mn2+掺杂纳米Zn2SiO4包覆SiO2样品中显示两套光致发光谱,一套为250nm左右激发产生的522nm绿色发光带,另一套为340~410nm宽带激发的440nm蓝色发光带,前者为典型的Mn2+离子发光,后者440nm发光带则有可能来源于基体SiO2的氧空位缺陷。  相似文献   

14.
Spherical SiO2 particles have been coated with Zn2SiO4:Eu3+ phosphor layers by a Pechini sol-gel process. The microstructure and luminescent properties of the obtained Zn2SiO4:Eu3+@SiO2 particles were well characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), photoluminescence (PL) spectra, and lifetime. The results demonstrate that the Zn2SiO4:Eu3+@SiO2 particles, which have regular and uniform spherical morphology, emitted an intensive red light emission at 613 nm under excitation at 395 nm. Besides, the effects of the Eu3+ concentration, annealing temperature and charge compensators of Li+ ions on the PL emission intensities were investigated in detail.  相似文献   

15.
以钛酸四丁酯为前驱物,采用溶胶-凝胶法制备了四种不同配方Eu3+掺杂的TiO2纳米晶.利用扫描电镜(SEM)、EDS能谱、光致发光光谱对样品的形貌、成份及性能进行了表征.研究了退火温度、稀土Eu3+离子掺杂摩尔分数、溶剂乙醇量等对发光性能的影响,并对其发光机理进行了探讨.结果表明:稀土Eu3+掺杂TiO2纳米晶样品,掺杂均匀、颗粒大约在30~80 nm|从EDS能谱分析可得Ti:O原子个数比并不是按化学计量TiO2满足1:2,这是因为在TiO2中形成的是Ti-O-Ti键,Eu3+离子很可能取代了Ti4+离子,同时又形成了氧空位,表明稀土Eu3+离子进入TiO2晶格中|样品的主发射峰在614 nm(5D0→7F2)处发光最强,且在593 nm(5D0→7F1)处出现了属于磁偶极跃迁的发射峰,制备Eu3+∶TiO2纳米晶的组分、退火温度、溶剂乙醇的量不同,发射光谱的强度也不同.  相似文献   

16.
采用高温固相法制备Li+掺杂Sr2Mg Si2O7∶Eu2+,Dy3+长余辉材料,对样品进行X射线衍射、扫描电镜、激发光谱、发射光谱、余辉衰减曲线和热释光曲线表征,研究了Li+掺杂对Sr2Mg Si2O7∶Eu2+,Dy3+发光性能的影响。实验结果表明:Li+掺杂对样品激发光谱和发射光谱的峰形、峰位基本没有影响,但是能改善样品的余辉性能。与未掺杂Li+的样品比较,Li+掺杂摩尔分数为2.5%样品的初始发光强度提高了1.5倍,余辉衰减常数提高了1.6倍。通过热释光曲线表征分析陷阱数量并计算了陷阱深度,分析表明,掺杂Li+能增加基质中氧空位的数量,适量增加陷阱深度,从而提高材料的发光性能。  相似文献   

17.
Ba_2B_2P_2O_(10):Eu~(3+)材料的光谱特性   总被引:1,自引:0,他引:1  
采用高温固相法合成了Ba2B2P2O10:Eu3+材料,并研究了材料的光谱特性。在400nm近紫外光激发下,材料的发射光谱由4组线状峰组成,峰值分别为600,618,627和660nm,分别对应Eu3+的5D0→7F1,7F2,7F3和7F4跃迁。研究了Eu3+掺杂浓度及电荷补偿剂对材料发射强度的影响,结果显示,随Eu3+掺杂浓度的增大,材料的发射强度增大,并未出现浓度猝灭效应,同时,添加电荷补偿剂可增强材料的发射强度。  相似文献   

18.
采用高温固相法分别在1 150,1 200和1 250 ℃制备(Mg1-x-yBaxSry)1.95SiO4∶0.05Eu荧光粉系列样品,通过XRD、PL和紫外发光照相记录,建立起组分-物相-色像对应关系,推导得到其三元色像图,并探讨制备温度对物相及色像影响。物相分析表明:(Mg1-x-yBaxSry)1.95SiO4∶0.05Eu荧光粉物相组成与组分间存在渐变性,从单组分点出发物相组成数目逐渐增多且各物相含量连续变化,在富Ba2+端形成Ba2SiO4相单相区;随着温度升高,Ba2SiO4单相区扩大(Mg2+(Sr2+)在1 150,1 200和1 250 ℃固溶度为20at%(30at%),30at%(35at%), 35at%(40at%)),混合相区同一组分点物相组元数减少(若该组分点包含α-Sr2SiO4和Ba2SiO4相则其含量增加)。光谱分析表明:同一样品在365 nm激发下比254 nm激发下绿光波段荧光发射强但红光光波段发射弱;荧光颜色和亮度也随组分、相组成呈渐变性,Ba2SiO4单相区为绿色荧光且随Sr2+和Mg2+固溶荧光亮度提高,在混合相区随着Ba2+含量减少荧光颜色由绿变红,红光区域随着Mg2+减少亮度逐渐减弱[如:(Mg1-ySry)2SiO4∶Eu系列随y增大由亮红变成暗红];随着温度升高,Ba2SiO4单相区内荧光粉亮度整体提高且最亮荧光粉组分中Mg2+和Sr2+固溶度提高;混合相区荧光强度整体提高,且绿色荧光粉组分区域增大(如:在254 nm激发下,(Mg1-xBax)1.95SiO4∶0.05Eu系列由红色变成绿色时x1 150 ℃=0.5,x1 200 ℃=0.4,x1 250 ℃=0.3,(Ba1-ySry)1.95SiO4∶0.05Eu系列由绿色变成红色时y1 150 ℃=0.6,y1 200℃=0.7,y1 250 ℃=0.8,(Bax(Mg0.2Sr0.8)1-x)1.95SiO4∶0.05Eu系列由红色变成绿色时x1 150 ℃=0.5,x1 200 ℃=0.4,x1 250 ℃=0.3)。研究建立了(Mg1-x-yBaxSry)1.95SiO4∶0.05Eu粉体组分-结构(相)-制备(温度)-性能(荧光)对应关系;优选出(Mg0.35Ba0.6Sr0.05)1.95SiO4∶0.05Eu/(Mg0.6Sr0.4)1.95SiO4∶0.05Eu等高效绿色/红色荧光粉;发现单相比混合相绿色荧光粉亮度高,固溶度提高有利于Ba2SiO4单相绿色荧光粉效率的提高;温度提高扩大了Ba2SiO4单相荧光粉、混合相区绿色荧光粉区域,且提高(Mg1-x-yBaxSry)1.95SiO4∶0.05Eu荧光粉整体亮度。由(Mg1-x-yBaxSry)1.95SiO4∶0.05Eu系列荧光粉得出的色像随组分、温度渐变规律可应用于其他组元荧光粉优选,对新发光材料的系统开发具有一定指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号