首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
电荷补偿对Sr2SiO4:Eu^3+材料光谱特性的影响   总被引:2,自引:1,他引:1  
采用溶胶-凝胶法制备了Sr2SiO4:Eu3+发光材料.测量了Sr2SiO4:Eu3+材料的激发与发射光谱,发射光谱主峰位于618 nm处;监测618 nm发射峰时,所得材料的激发光谱主峰分别为320 nm、397 nm、464 nm和518 nm.研究了Sr2SiO4:Eu3+材料发射峰强度随电荷补偿剂Li+、Na+和K+掺杂浓度的变化情况.结果显示,随电荷补偿剂浓度的增大,材料发射峰强度均表现出先增大后减小的趋势,但不同电荷补偿剂下,材料发射峰强度最大处对应的补偿剂浓度不同,补偿剂Li+、Na+和K+的浓度分别为8 mol%、7.5 mol%和7 mol%.  相似文献   

2.
电荷补偿对Sr2SiO4:Dy3+材料发射光谱的影响   总被引:2,自引:1,他引:1  
采用高温固相反应方法在空气中制备了Sr2SiO4:Dy3+发光材料.在365 nm紫外光激发下,测得Sr2SiO4:Dy3+材料的发射光谱为一多峰宽谱,发射峰分别位于486,575和665 nm处.研究了电荷补偿剂Li+,Na+和K+对Sr2SiO4:Dy3+材料发射光谱强度的影响,结果显示,不同电荷补偿剂下,随电荷补偿剂掺杂浓度的增大,Sr2SiO4:Dy3+材料发射光谱强度的演化趋势相同,即,Sr2SiO4:Dy3+材料发射峰强度先增大后减小,但不同电荷补偿剂下,材料发射峰强度最大处对应的补偿剂浓度不同,对应Li,Na+和K+时,浓度分别为4 mol%,3 mol%和3 mol%.同时,对研究结果进行了理论分析.  相似文献   

3.
Ca2SiO4:Dy3+材料的制备及其发光特性   总被引:1,自引:0,他引:1       下载免费PDF全文
采用高温固相法制备了Ca2SiO4:Dy3 发光材料,在365 nm紫外光激发下,测得Ca2SiO4:Dy3 材料的发射光谱为一多峰宽谱,主峰分别位于486 nm,575 nm和665 nm处;监测575 nm发射峰,测得材料的激发光谱为一多峰宽谱,主峰分别位于331 nm,361 nm,371 nm,397 nm,435 nm,461 nm和478 nm处,研究了Dy3 掺杂浓度对Ca2SiO4:Dy3 材料发射光谱及发光强度的影响,结果显示,随Dy3 浓度的增大,黄、蓝发射峰强度比(Y/B)逐渐增大,利用Judd-Ofelt理论解释了其原因;随Dy3 浓度的增大,Ca2SiO4:Dy3材料发光强度先增大,在Dy3浓度为4 mol%时到达峰值,而后减小,根据Dexter理论其浓度猝灭机理为电偶极-电偶极相互作用,研究了电荷补偿剂Li ,Na 和K 对Ca2SiO4:Dy3 材料发射光谱的影响,结果显示,不同电荷补偿剂下,随电衙补偿剂掺杂浓度的增大,Ca2SiO4:Dy3 材料发射光谱强度的演化趋势相同,即Ca2SiO4:Dy3材料发射峰强度先增大后减小,但不同电荷补偿剂下,材料发射峰强度最大处对应的补偿剂浓度不同,对应Li ,Na 和K 时,浓度分别为4 mol%,4 mol%和3 mol%.  相似文献   

4.
采用高温固相反应方法在空气中制备了Sr2SiO4∶Dy^3+发光材料。在365 nm紫外光激发下,测得Sr2SiO4∶Dy^3+材料的发射光谱为一多峰宽谱,发射峰分别位于486,575和665 nm处。研究了电荷补偿剂Li^+,Na^+和K^+对Sr2SiO4∶Dy^3+材料发射光谱强度的影响,结果显示,不同电荷补偿剂下,随电荷补偿剂掺杂浓度的增大,Sr2SiO4∶Dy^3+材料发射光谱强度的演化趋势相同,即,Sr2SiO4∶Dy^3+材料发射峰强度先增大后减小,但不同电荷补偿剂下,材料发射峰强度最大处对应的补偿剂浓度不同,对应Li^+,Na^+和K^+时,浓度分别为4 mol%,3 mol%和3 mol%。同时,对研究结果进行了理论分析。  相似文献   

5.
采用高温固相反应方法在空气中制备了M3(M=Ca,Sr,Ba)Y2(BO3)4∶Eu3 红色发光材料,测量结果显示,材料的主发射峰均位于613 nm处,监测613 nm发射峰时,所得材料的激发光谱相同。研究了Li ,Na 和K 对M3(M=Ca,Sr,Ba)Y2(BO3)4∶Eu3 材料激发与发射光谱的影响,结果显示,加入Li ,Na 和K 后,M3(M=Ca,Sr,Ba)Y2(BO3)4∶Eu3 材料的激发与发射光谱的峰值位置并不发生变化,但材料的激发与发射光谱的峰值强度均得到了不同程度的增强。在Li ,Na 和K 掺入浓度相同的条件下,研究发现,与加入Na 和K 时相比,加入Li 时,M3(M=Ca,Sr,Ba)Y2(BO3)4∶Eu3 材料的激发与发射光谱的峰值增强效果最明显。进而研究了Sr3Y2(BO3)4∶Eu3 材料发射峰强度随Li 掺杂浓度的变化情况,结果表明,随着Li 掺杂浓度的增大,Sr3Y2(BO3)4∶Eu3 材料发射峰强度先增大后减小,在Li 浓度为5 mol%时到达峰值,约为未掺杂时的两倍。  相似文献   

6.
采用高温固相法制备了KBaPO4:Eu3+红色发光材料,研究了Eu3+掺杂浓度、电荷补偿剂等对材料发光性质的影响,并利用X射线衍射及光谱等技术对材料的性能进行了表征.研究结果显示:在400 nm近紫外光激发下,材料呈多峰发射,分别由Eu3+的5D0→7FJ(J=0,1,2,3,4)能级跃迁产生,主峰位于621 nm|监测621 nm发射峰,所得激发光谱由O2-→Eu3+电荷迁移带(200~350 nm)和f-f高能级跃迁吸收带(350~450 nm)组成,主峰位于400 nm|改变Eu3+掺杂浓度,KBaPO4∶Eu3+材料的发射强度随之改变,Eu3+浓度为5 mol%时,强度最大|依据Dexter理论,得知引起浓度猝灭的原因为电偶极-电偶极相互作用|添加电荷补偿剂,可增强KBaPO4∶Eu3+材料的发射强度,其中以添加Li+,Cl-时,材料发射强度提高最明显.  相似文献   

7.
采用固相法制备了红色LiM(M=Ca,Sr,Ba)BO3∶Re3+(Re=Eu,Sm)发光材料,研究了材料的发光性能。研究发现LiM(M=Ca,Sr,Ba)BO3∶Eu3+材料呈现多峰发射,最强发射分别位于610,615,613 nm处,分别监测这三个最强峰,所得激发光谱峰值位于369,400,470 nm。LiM(M=Ca,Sr,Ba)BO3∶Sm3+材料也呈多峰发射,分别对应Sm3+的4G5/2→6H5/2、4G5/2→6H7/2和4G5/2→6H9/2跃迁发射;分别监测602,599,597 nm三个最强发射峰,所得激发光谱峰值位于374,405 nm。研究了激活剂浓度对材料发射强度的影响,结果随激活剂浓度的增大,发射强度先增强后减弱,即,存在浓度猝灭效应。实验表明,加入电荷补偿剂Li+、Na+或K+均可提高LiM(M=Ca,Sr,Ba)BO3∶Re3+(Re=Eu,Sm)材料的发射强度。  相似文献   

8.
采用高温固相法制备了Ca2SiO4:Dy3+发光材料.在365nm紫外光激发下,测得Ca2SiO4:Dy3+材料的发射光谱为一多峰宽谱,主峰分别位于486nm,575nm和665nm处;监测575nm发射峰,测得材料的激发光谱为一多峰宽谱,主峰分别位于331nm,361nm,371nm,397nm,435nm,461nm和478nm处.研究了Dy3+掺杂浓度对Ca2SiO4:Dy3+材料发射光谱及发光强度的影响,结果显示,随Dy3+浓度的增大,黄、蓝发射峰强度比(Y/B)逐渐增大,利用Judd-Ofelt理论解释了其原因;随Dy3+浓度的增大,Ca2SiO4:Dy3+材料发光强度先增大,在Dy3+浓度为4 mol%时到达峰值,而后减小,根据Dexter理论其浓度猝灭机理为电偶极-电偶极相互作用.研究了电荷补偿剂Li+,Na+和K+对Ca2SiO4:Dy3+材料发射光谱的影响,结果显示,不同电荷补偿剂下,随电荷补偿剂掺杂浓度的增大,Ca2SiO4:Dy3+材料发射光谱强度的演化趋势相同,即Ca2SiO4:Dy3+材料发射峰强度先增大后减小,但不同电荷补偿剂下,材料发射峰强度最大处对应的补偿剂浓度不同,对应Li+,Na+和K+时,浓度分别为4mol%,4mol%和3mol%. 关键词: 白光LED 2SiO4:Dy3+')" href="#">Ca2SiO4:Dy3+ 发光特性 电荷补偿  相似文献   

9.
采用高温固相法制备了LiBaPO4:Eu3+红色发光材料,研究了Eu3+掺杂浓度、电荷补偿剂等对材料发光性质的影响.结果显示,在401nm近紫外光激发下,材料呈多峰发射,分别由Eu3+的5Do→7FJ(J=0,1,2,3,4)能级跃迁产生,主峰位于619 nm;监测619 nm发射峰,所得激发光谱由O2- →Eu3+电荷迁移带(200~350nm)和f-f高能级跃迁吸收带(350~450nm)组成,主峰位于401 nm.改变 Eu3+掺杂浓度,LiBaPO4:Eu3+材料的发射强度随之改变,Eu3+摩尔分数为5%时,强度最大;依据Dexter理论,得出浓度猝灭机理为电偶极-电偶极相互作用;添加电荷补偿剂提高了LiBaPO4:Eu3+材料的发射强度,且Li+和C1-的效果最好.  相似文献   

10.
采用固相法制备了绿色LiM(M=Ca,Sr,Ba)BO3:Tb3+发光材料.测量结果显示材料均可被紫外(350~410 nm)光激发,发射绿光.研究了Tb3+浓度对材料发射光谱的影响,结果显示,随Tb3+浓度的增大,发射光谱峰位未发生变化,但其强度呈现出先增大后减小的趋势,即:存在浓度猝灭效应.加入电荷补偿剂Li+,Na+和K+提高了LiM(M=Ca,Sr,Ba)BO3:Tb抖材料的发射强度.  相似文献   

11.
研究了Ce3+在碱金属-碱土金属硼酸盐体系LiCaBO3,LiSrBO3和LiBaBO3中的光谱特性,发现Ce3+在该体系中均呈现非对称的宽谱发射,对应的发射光谱主峰分别为428,436和440 nm;分别监测三个主发射峰,所得激发光谱主峰分别为364、369和370 nm。研究了电荷补偿剂Li+,Na+,K+对3种材料发射强度的影响,结果显示,材料的发射强度明显提高,其中以掺入Li+时效果最明显。  相似文献   

12.
采用溶胶一凝胶法制备了Ca3SiO5:Eu2+发光材料.测量了材料的激发与发射光谱,结果显示,材料的发射光谱为一峰值位于505 nm处的不对称的宽带谱;监测505nm发射峰,所得材料的激发光谱为一双峰宽谱,峰值为374和397nm,研究了合成条件对Ca3SiO5:Eu2+材料发射光谱的影响,结果显示,随合成温度或合成时间或Eu2+浓度的增大,Ca3 siO5:Eu2+材料发射光谱峰值强度均表现出先增大后减小的趋势,当合成温度为1100℃、合成时间为4 h、Eu2+浓度为0.5 mol%时,Ca3SiO5:Eu2+材料发射光谱峰值强度最大.  相似文献   

13.
Ba_2B_2P_2O_(10):Eu~(3+)材料的光谱特性   总被引:1,自引:0,他引:1  
采用高温固相法合成了Ba2B2P2O10:Eu3+材料,并研究了材料的光谱特性。在400nm近紫外光激发下,材料的发射光谱由4组线状峰组成,峰值分别为600,618,627和660nm,分别对应Eu3+的5D0→7F1,7F2,7F3和7F4跃迁。研究了Eu3+掺杂浓度及电荷补偿剂对材料发射强度的影响,结果显示,随Eu3+掺杂浓度的增大,材料的发射强度增大,并未出现浓度猝灭效应,同时,添加电荷补偿剂可增强材料的发射强度。  相似文献   

14.
白光LED用LiBaBO3:Eu2+材料发光特性研究   总被引:3,自引:0,他引:3       下载免费PDF全文
采用高温固相法制备了LiBaBO3:Eu2+绿色发光材料.测量了Eu2+浓度为1 mol%时样品的激发与发射光谱,其发射光谱为双峰宽谱,主峰分别为482和507 nm,与理论计算值符合很好;监测482 nm发射峰时,对应激发光谱的峰值为287和365 nm,监测507 nm发射峰时,对应的激发峰为365和405 nm.研究了Eu2+浓度对材料发射光谱的影响,结果显示,随Eu2+浓度的增大,蓝、绿发射峰均发生了红移,当Eu2+浓度大于3 mol%时,蓝色发射峰消失,只有绿色发射峰存在.测量了LiBaBO3:Eu2+材料发光强度随Eu2+浓度的变化情况,结果显示随Eu2+浓度的增大发光强度呈现先增大后减小的趋势,在Eu2+浓度为3 mol%时到达峰值,根据Dexter理论,其浓度猝灭机理为电偶极-偶极相互作用.  相似文献   

15.
SrAl_2B_2O_7:Dy~(3+)材料的制备及其发光性能   总被引:1,自引:0,他引:1       下载免费PDF全文
杨志平  马欣  赵盼盼  宋兆丰 《物理学报》2010,59(8):5387-5391
采用高温固相法制备了SrAl2B2O7:Dy3+发光材料.在350nm紫外光激发下,测得SrAl2B2O7:Dy3+材料的发射光谱为一个多峰宽谱,主峰分别为480,573和678nm;分别和Dy3+的4F9/2→6H15/2,4F9/2→6H13/2,4F9/2→6H11/2的跃迁发射相对应;监测573nm的发射峰,得到材料的激发光谱为一个多峰宽谱,主峰分别为295,325,350,365,400nm.研究了Dy3+掺杂浓度对SrAl2B2O7:Dy3+材料发射光谱的影响,随着Dy3+掺杂浓度的增大,SrAl2B2O7:Dy3+材料的Iy/Ib逐渐增大,根据Judd-Ofelt理论解释了其原因.随着Dy3+掺杂浓度的增大,Dy3+的4F9/2→6H13/2跃迁产生的573nm发射峰强度先增大,在4%时达到最大值,之后减小,其自身的浓度猝灭机理为电偶极-电偶极相互作用.不同的电荷补偿剂Li+,Na+,K+的引入均使发光强度得到提高,尤其以Li+最佳,发光强度提高了大约33%.  相似文献   

16.
采用高温固相法合成了Li+、Na+、K+和Si4+作为电荷补偿剂的Ca2.96Eu0.04(PO4)2白光LED用红色荧光粉。采用X射线衍射仪、荧光光谱仪对材料的物相和发光性能进行了表征。样品的激发光谱由200~310 nm的电荷迁移带和310~500 nm的锐线光谱组成,其中396 nm的激发强度最大。发射光谱主要由5D0→7F1(593 nm)和5D0→7F2(616 nm)跃迁导致的发射峰构成。掺入Li+、Na+、K+和Si4+可以有效提高Ca2.96Eu0.04(PO4)2荧光粉的发光强度,同时对荧光粉的寿命和色坐标影响不大。荧光粉的色坐标均位于红色区域。  相似文献   

17.
采用高温固相法制备了LiBaPO4:Eu3+红色发光材料,研究了Eu3+掺杂浓度、电荷补偿剂等对材料发光性质的影响.结果显示,在401nm近紫外光激发下,材料呈多峰发射,分别由Eu3+的5Do→7FJ(J=0,1,2,3,4)能级跃迁产生,主峰位于619 nm;监测619 nm发射峰,所得激发光谱由O2- →Eu3+电...  相似文献   

18.
采用固相法制备了LiBaBO3:Ce3+发光材料.测得LiBaBO3:Ce3+材料的发射光谱为一不对称的单峰宽谱,主峰位于440 nm;监测440 nm发射峰,可得其激发光谱为一主峰位于370 nm的宽谱.利用van Uitert公式计算了Ce3+取代LiBaBO3中Ba2+时所占晶体学格位,得出438 nm发射带归属于九配位的Ce3+发射,而469 nm发射带起源于八配位的Ce3+发射.研究了Ce3+浓度对LiBaBO3:Ce3+材料发光强度的影响,结果显示,随Ce3+浓度的增大,发光强度呈现先增大后减小的趋势,Ce3+浓度为3mol%时强度最大,造成其浓度猝灭的原因为电偶极-偶极相互作用.引入Li+,Na+或K+可增强LiBaBO3:Ce3+材料的发射强度.利用InGaN管芯(370 nm)激发LiBaBO3:Ce3+材料,获得了很好的蓝白光发射,色坐标为(x=0.291,y=0.297).  相似文献   

19.
采用高温固相法在N2-H2还原气氛下合成了一系列Sr3(PO4)2∶Eu2+蓝色荧光粉,通过X射线衍射仪(XRD)、荧光光谱仪(PL)对荧光粉的晶体结构、激发和发射光谱进行了表征。结果表明:微量的Eu2+掺杂不会改变其晶体结构;Sr3(PO4)2∶Eu2+荧光粉在310~390nm范围内可以有效的被激发,激发峰位于359nm;发射光谱为主峰位于438nm宽带发射(带宽约为150nm),对应于Eu2+的4f65d1→4f7跃迁.通过高斯拟合发现,Eu2+至少占据了Sr3(PO4)2两种不同的Sr2+格位,形成两个发光中心(430和459nm).当Eu2+的掺杂浓度为7%时,其具有最大的发光强度,继续增大Eu2+的掺杂浓度,Sr3(PO4)2∶Eu2+的发射光谱会出现浓度猝灭现象,且其发射峰会随着铕离子浓度增加而发生红移。Sr3(PO4)2∶Eu2+荧光粉在近紫外区有着强而宽的吸收带,与近紫外LED芯片发射相匹配,相对发光强度是蓝色荧光粉BaMgAl10O17∶Eu2+(BAM)的1.3倍,是一种很有前途的白光LED用蓝色荧光粉材料。  相似文献   

20.
采用高温固相法合成Sr3B2O6∶Eu3+,Li+红色荧光粉,考察了激活剂Eu3+和电荷补偿剂Li+浓度对Sr3B2O6∶Eu3+,Li+荧光粉发光性能的影响。结果表明:适量掺杂Eu3+、Li+离子并不改变Sr3B2O6的结构。当Eu3+掺杂量为4%、Li+的掺杂量为8%时,在900℃下灼烧2 h可以得到发光性能最佳的Sr2.9B2O6∶0.04Eu3+,0.08Li+红色荧光粉。以394 nm的近紫外光激发时,Sr3B2O6∶Eu3+,Li+荧光粉发射出红光,对应于Eu3+的4f-4f跃迁,其中以614 nm附近的5D0→7F2跃迁发光最强,是一种有潜力用于白光LED的红色荧光粉。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号