首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An experimental investigation has been conducted of the propagation characteristics of several types of optical fibres which are candidates for use in optical beam delivery systems for carbon monoxide lasers. Both solid core (chalcogenide) fibres and hollow core (with dielectric or dielectric coated metal) waveguides have been investigated. Such experiments have included an assessment of both the power transmission characteristics, and the effects of waveguide transmission on the optical quality of the beam at the exit of the fibre. The experiments indicated lowest loss for the chalcogenide solid core fibre with a value of 0.4 dB m−1.  相似文献   

2.
A single chip optical receiver with an integrated large-diameter photodiode, transimpedance amplifier, two stages active equalizer, post amplifier and 50 Ω driver is used for gigabit transmission over PMMA step plastic optical fiber (SI-POF). The large-diameter photodiode with an antireflection coating optimized for red light. The integrated equalizer enables the presented optical receiver to reach 1 Gbit/s over 50 m SI-POF at bit error ratio of 10− 6. An error free (< 10− 9) 1 Gbit/s data rate over 40 m standard PMMA step-index plastic optical fiber is also achieved.  相似文献   

3.
The significant parameters for plastic fibres with various core/cladding combinations are given: refractive index, numerical aperture, critical angle of total internal reflection at the core/cladding interface and maximum angle of aperture. The output power of a plastic fibre (PS/PMMA) was measured as a function of the angle of incidence. The results are interpreted using the ray optical fibre transmission model. Various launch-loss-reducing optical end-face working procedures are compared. We also investigated a method to avoid Fresnel reflection losses by a Brewster angled fibre input end-face for a linearly polarized light beam. The transverse and longitudinal intensity distribution of the output beam of a PS/PMMA fibre was measured. We conclude that a single large core clad plastic fibre is a promising alternative to a multi-glass fibre bundle for some applications.  相似文献   

4.
An optical receiver having a high linearity is used for multilevel communication over standard step plastic optical fiber. A large-diameter photodiode with an antireflection coating optimized for red light was integrated. These features enable the used optical receiver to be a promising plastic optical fiber receiver. An error free (< 10−8) 170 Mb/s data rate over 115 m standard PMMA step-index plastic optical fiber is achieved with four-level and eight-level pulse amplitude modulation.  相似文献   

5.
Laser-induced fluorescence, Raman and absorption spectroscopy are used to investigate reversible degradation of transmission in PMMA optical fibers. When exposed to 254 nm UV light, optical transmission of PMMA plastic optical fiber in 400-800 nm range shows a significant increase in attenuation for shorter wavelengths. Over a period of 10 days following UV exposure, the transmittance of the plastic fiber recovers to a significant fraction of its pre-exposure value. UV-exposed fiber exhibits strong laser-induced fluorescence with 488 nm argon-ion laser. This fluorescence spans a spectral region between 450 nm and 750 nm with a peak around 580 nm. The fluorescence intensity decreases over several days following UV exposure. Likewise, Raman is also used to investigate degradation process. Freshly UV-exposed fiber shows total absence of Raman spectrum of PMMA. Following UV exposure, recovery of Raman signal over several days is correlated to the recovery of fiber transmittance as well as the decay of laser-induced fluorescence. A widely believed plausible explanation for UV-induced increase of attenuation involves formation of different macro radicals which recombine progressively after UV is stopped. Laser-induced fluorescence over several days is reported here providing direct evidence for molecular-level deterioration and recovery of PMMA.  相似文献   

6.
A novel chalcone derivative, (2E)-1-(2,4-di- chloro-5-fluorophenyl)-3-[4-dimethylamino)phenyl]prop-2-en-1-one, abbreviated as NNDC, was prepared and characterized by elemental analyses, infrared (IR) and proton nuclear magnetic resonance (1H NMR) spectrum, and thermal analyses. The NNDC-doped poly(methyl methacrylate) (PMMA) thin films with five different doping concentrations by weight were prepared by using a spin-coating method. Their linear optical properties were investigated by using a prism coupling measuring system. The third-order nonlinear optical properties of NNDC in 1,2-dichloroethane (NNDC/1,2-dichloroethane) solution and NNDC-doped PMMA (NNDC/PMMA) films were investigated by using the laser Z-scan technique with 20 ps pulses at 532 nm. A self-focusing effect was observed from the Z-scan curves for solution and thin films and the nonlinear refractive index of the film increases with the increase of the doping concentration. In addition, nonlinear absorption was negligible for all samples. The magnitude of third-order nonlinear refraction index n 2 and the third-order nonlinear susceptibility χ (3) for thin films were 10−15 m2/W and 10−9 esu, respectively, which are about three orders larger than that of NNDC/1,2-dichloroethane solution. Some necessary analyses were presented. The results show that this material is a promising candidate for application in the nonlinear optical devices at 532 nm.  相似文献   

7.
To operate and read out even the innermost detectors under any particular conditions, electronics and optical components must be developed accordingly. For semiconductor lasers, on which we will concentrate here, it has been found that an inner temperature increase has a direct impact on the light power emitted by the device. It was found that the effects of radiation on the behavior of semiconductor lasers are convolved with those of temperature. An optimized coupling to the cooling of the laser device reduces the thermal effects in the material. Therefore, a test stand to qualify the effect of heat in the device and the adoption of the heat sink is realized. In this paper, we create a model describing the degradation of the light power and voltage characteristic of a semiconductor-laser undergoing irradiation where the high temperature effects are taken into account. This VCSEL-device model can be used to predict the behavior and operation-performance characteristics (rise time, 3 dB bandwidth, light power, resonance frequency, and transmission bit rate) of a laser being irradiated with different neutron doses. We check the robustness of the model against the high fluence (in excess of 1015 neutrons/cm2). We take into account the study of different semiconductor- and polymeric material-based VCSEL devices such as aluminum gallium arsenide (AlGaAs), indium gallium arsenide phosphors (InGaAsP), and polymeric polymethylmethacrylate (PMMA) under the same operating conditions.  相似文献   

8.
To realize the low-loss connection of two optical fibres intended as a transmission medium for optical signals, very tight tolerances have to be observed on account of the small geometrical dimensions involved. The present work describes a fully automatic system for the alignment of optical fibres in thex-y planes relative to a light source, which has only a single intensity peak, so that maximum optical power is launched into the fibre. The light source can be, for instance, the radiating end of a fibre, a semi-conductor laser or a light-emitting diode. The optical power coupled into the fibre serves as the control signal. Three precision displacement stages driven by stepping motors serve to align the fibres. Various sequential control algorithms for optimal coupling are investigated with reference to theory. Two algorithms are tested with the aid of a computer with reference to the alignment accuracy and speed requirements which have to be met and the one shown by theoretical simulation to be the more favourable is selected for technical realization. The resulting system was used for numerous alignment operations for the coupling of two graded-index fibres. The alignment time is below 1 s and the coupling efficiency compared with manual coupling alignment efficiency (= 100%) is above 99%, corresponding to an additional loss of <0.05 dB.  相似文献   

9.
<正>The diffusion behaviours of hydrogen(H),deuterium(D),and tritium(T) from W(110) surface into bulk and in bulk W are investigated using first-principles calculations combined with simplified models.The diffusion energy barrier is shown to be 1.87 eV from W(110) surface to the subsurface,along with a much reduced barrier of 0.06 eV for the reverse diffusion process.After H enters into the bulk,its diffusion energy barrier with quantum correction is 0.19 eV. In terms of the diffusion theory presented by Wert and Zener,the diffusion pre-exponential factor of H is calculated to be 1.57×10-7 m2·s-1,and it is quantitatively in agreement with the experimental value of 4.1×10-7 m2·s-1. Subsequently,according to mass dependence((1/m)1/2) of H isotope effect,the diffusion pre-exponential factors of D and T are estimated to be 1.11×10-7 m2·s-1 and 0.91×10-7 m2·s-1,respectively.  相似文献   

10.
Optical waveguide 3-dB couplers integrated on semicondutors have been studied, designed and fabricated, using both bulk and diluted multi-quantum-well InGaAsP/InP-based materials, grown by MOCVD. The device structure is based on the two-mode interference (TMI) principle and is fully compatible for integration with the optoelectronic and electronic components of a coherent receiver. Bulk material couplers provide an output balanced within 0.05 dB per nanometer and an excess loss of 1.4 dB, compared to a straight guide, while coupling loss to a tapered-lensed single mode fibre is 4 dB.Improved coupling efficiency to single-mode fibres is achieved by use of moderately diluted multi-quantum-well waveguides, which include InGaAsP wells and InP barriers: coupling loss to a tapered-lensed single-mode fibre as low as 0.5 dB and excess loss of 1.8 dB are featured. Couplers fabricated with this waveguide structure have a balance sensitivity of 0.03 to 0.04 dB per nanometer.A moderately diluted multi-quantum-well 3-dB coupler has been permanently pigtailed and butt-coupled to a dual balanced PIN photoreceiver. This hybrid assembly was tested in a coherent transmission system at 155 and 622 Mbits-1 showing sensitivities, for 10-9 BER, of about-38.0 dBm and-28.8 dBm, respectively.  相似文献   

11.
In this paper, we present a theoretical calculation of a highly nonlinear germanium (Ge) doped photonic crystal fiber with all-normal group velocity dispersion to design a supercontinuum (SC) light source at 1.55 μm. By doping 3% higher refractive index Ge inside the host silica, the nonlinear coefficient is increased to a value as large as 60.5 W?1 km?1 at 1.55 μm. A 10 dB bandwidth of a 120 nm SC spectrum for a 2.5 ps input optical pulse and a 10 dB bandwidth of a 190 nm SC spectrum for a 1.0 ps input optical pulse have been found using the same fiber length of 200m and input optical power of 18 W. The coherent lengths of the generated SC light sources are found to be 8.8 μm for a 2.5 ps input optical pulse and 5.6 μm for a 1.0 ps input optical pulse. Therefore, the highest longitudinal resolution at 1.55 μm is found to be about 4.0 μm for biological tissues.  相似文献   

12.
针对磁光晶体在大功率光隔离器中的应用,结合实际光学元件参数,利用琼斯矩阵分析了隔离度与入射光功率间的关系。提出基于外置材料,对磁光晶体热致退偏效应的补偿方案:针对两种不同的常见补偿材料,给出了它们的设计参数,并对两种材料的补偿效果进行对比。结果表明,在50 W的光功率下,利用CaF2晶体和SiO2,可分别提高隔离度约15dB和4dB。  相似文献   

13.
A cw CO2 laser, coupled with an astigmatism free beam focussing mirrors arrangement is used for processing a brittle plastic, CR-39 without producing cracks, vents or chips. The processing is based on the formation of volatile products of laser-induced decomposition in the plastic. Threshold fluence for the decomposition (found to be independent of the power density and beam residence time) in CR-39 at=10.6m is determined to be 25 J cm–2 and the decomposition threshold power density for cw irradiation 2.1±0.5 W cm–2. The depth and width of the tapered laser processed region are observed to increase with power density and beam residence time. The widths attain a steady state value of 1 mm at beam residence time above 65 ms, for a fixed power density (2.5×104 W cm–2) and sheet thickness (250 m). Taper angle of the edges decreases with increasing power density and/or beam residence time. The heat affected zone (measured in crossed polarisers) around the processed region is found to extend with increasing beam residence time but remains unaffected on changing power density. The results are discussed in terms of the optical and thermophysical properties of CR-39 and the parameters of the interacting laser beam.  相似文献   

14.
A novel method for measuring the nonlinear refractive index of an optical fiber using a spectral ratio between the modulation frequency and a harmonic component in a modulated optical fiber ring resonator (OFRR) is proposed. The spectral ratio between the modulation frequency and the 2nd-harmonics generated by phase-modulation through the OFRR is increased with increasing the input light power and has peaks above 5 W input power, however, the peaks was shifted to the lower input power below 1 W by averaging taken into account of the phase distribution. A experimental setup consisted of an OFRR system and an Ar-laser as a pump light source was used to determine the nonlinear refractive index of an optical fiber. In the experimental results, the peaks of the spectral ratio as a function of the input power was found out at 0.8 W and 0.45 W of the input power corresponding to the input source line at 488.0 nm and 514.5 nm, respectively. The profile was similar to that obtained by the simulation and the nonlinear refractive index of a optical fiber was determined as 1.0 × 10−22 m2/V2 by a relationship between the input power giving the peak and the nonlinear refractive index.  相似文献   

15.
Yu  Zhong  Gao  Lumei  Wei  Wei  Hou  Xun 《Optical and Quantum Electronics》2004,36(4):321-330
An efficient analysis method for erbium-doped optical waveguide amplifiers (EDWA) is presented. By solving the rate equation, the propagation in EDWA is stimulated using the finite difference beam propagation method (FD-BPM). The dependence of the gain of EDWA is investigated on the waveguide length, erbium concentration, and signal and pump power. The analysis shows that considerable gain levels, 3.35 dB/cm can be achieved in 10 cm-long EDWA with an erbium concentration of 2.0 × 1026 ions/m3, signal power 1 W and pump power 100 mW at 980 nm.  相似文献   

16.
We present high-performance 1550 nm DFB lasers with butt-coupled, bulk type integrated electroabsorption modulators of good manufacturability and reliability. Key issues in device design are reviewed and the strong influence of the exact detuning between lasing wavelength and modulator bandgap is demonstrated. Fibre-coupled output powers as large as 6 dBm and attenuation efficiencies as high as 12 dB V–1 are obtained. Butterfly-packaged devices show only 1 dB penalty for 10 Gbit s–1 NRZ transmission over 50-km standard single-mode fibre (SMF) without the use of an optical amplifier. With an optical booster amplifier, self-phase-modulation in the fibre is exploited and repeaterless 10 Gbit s–1 transmission is possible over 150-km standard SMF.  相似文献   

17.
A distributed feedback (DFB) laser module has been developed for 2.5 Gbs-1 optical transmission systems. The DFB laser has a multiple-quantum-well (MQW) active layer and a planar buried heterostructure (PBH) for a low threshold current and stable singlemode operation with low chirping. A PBH DFB laser module with a single-mode fibre pigtail and an optical isolator was designed and fabricated by employing a single lens and a laser welding method. The fabricated MQW PBH DFB laser module is shown to be a suitable light source for 2.5 Gb s-1 optical transmission systems with a minimum received power of-33 dBm after 47 km conventional optical fibre transmission.  相似文献   

18.
We present an investigation into the transmission loss and dispersion of terahertz waves in plastic photonic band-gap fibers having a cladding with a finite number of air hole rings. The leakage loss and absorption loss caused by background material are analyzed by a full-vectorial two-dimensional finite difference frequency domain method and the lowest power transmission loss of 6.126 dB/m at 1.75 THz is realized. Numerical results show that a larger diameter-to-pitch ratio is suitable for lower transmission loss and lower group-velocity dispersion in plastic terahertz photonic band-gap fibers. PACS 41.20.Jb; 41.20.Cv; 42.81.Dp  相似文献   

19.
Flying-spot displays require light sources in the red, green and blue with a high optical output power and nearly diffraction limited beams. In this paper we present experimental results of red-emitting, AlGaInP based, tapered diode lasers and their integration into diode laser modules. The laser modules emit a collimated, almost diffraction limited beam with an optical output power as high as 1W at a wavelength close to 635 nm. The tapered laser chips were designed with emphasis on achieving a good beam quality in vertical and lateral directions of a collimated beam. To test the suitability for flying-spot display applications, we performed fiber coupling experiments with a low mode number optical fiber with an etendue as low as 6 × 10?6 mm2 sr. A maximum transmission of 70% of the launched power behind the uncoated fiber as well as a usable power in excess of 580mW were measured.  相似文献   

20.
An optical receiver with automatic-gain-control transimpedance amplifier, linear post amplifier and linear line driver suitable for multilevel signals is presented. A large-diameter photodiode (400 μm) with an antireflection coating optimized for red light was integrated. These features enable the presented optical receiver to be a promising plastic optical fiber receiver. An error free (<10−8) 400 Mbit/s data rate over 50 m PMMA-step index plastic optical fiber (1 mm diameter) is achieved with eight-level pulse amplitude modulation (8-PAM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号