首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, PMMA/ZnO nanocomposites have been prepared by a very simple, facile and versatile chemical approach. The prepared PMMA/ZnO nanocomposites possess no color, high transparency, good thermal stability, UV-shielding capability, luminescence and homogeneity. The chemical process involved solution mixing of ZnO nanoparticles dispersed in DMAc with the Polymethylmethacrylate (PMMA) matrix dissolved in the same solvent. The effect of ZnO content on the physical properties of the PMMA matrix is investigated by X-ray diffraction, field emission scanning electron microscopy, thermogravimetric analysis, UV–Vis absorption and photoluminescence spectroscopy. It was found that pure hexagonal ZnO nanoparticles with an average particle size of 4–8 nm were homogeneously dispersed in the PMMA matrix. A significant improvement in thermal properties was observed with the incorporation of 1.0 wt% ZnO nanoparticles. The prepared nanocomposite films are highly transparent and a clear excitonic peak is observed in their absorption spectra. Measurement of room temperature photoluminescence spectra shows intensive near-band edge emission peak at 3.28 eV without any structural defects for a nanocomposite film with a filler content of 1.0 wt%.  相似文献   

2.
This article represents a new Y-branch hybrid design of 2D photonic crystal with defect control. The structure is made of hexagonal arrays of InP nano-rods surrounded by air. This system is comprised of a modified add/change to a polymethylmethacrylate (PMMA) rod, which can be applied to the beam splitter selection device. The optical properties and radial of PMMA defect rods have been transfigured. By selecting an appropriate temperature, a change of refractive index and expanded radius are occurred. The obtained results have shown that the selected optical amplitude in a hybrid semiconductor-polymer Y-branch can be separated to 50–50, 60–40 and 67–33 % at wavelength 1.557 µm. Both of the photonic band gap and transmission spectra are calculated by using 2D finite different time domain (FDTD) method via OptiFDTD software. Such a device can be useful for photonic crystal switching devices in the integrated optical circuit.  相似文献   

3.
A new experimental method for measuring the optical anisotropy induced at photochemical reactions is proposed. The method is based on polarization holography and is a zero-background high sensitive technique. It is used to measure the molecular dichroism of fluorescein and the birefrigence induced at the additional photopolymerization of PMMA.  相似文献   

4.
Design of polymer anti-reflective (AR) optical coatings for plastic substrates is challenging because polymers exhibit a relatively narrow range of refractive indices. Here, we report synthesis of a four-layer AR stack using hybrid polymer:nanoparticle materials deposited by resonant infrared matrix-assisted pulsed laser evaporation. An Er:YAG laser ablated frozen solutions of a high-index composite containing TiO2 nanoparticles and poly(methyl-methacrylate) (PMMA), alternating with a layer of PMMA. The optimized AR coatings, with thicknesses calculated using commercial software, yielded a coating for polycarbonate with transmission over 97 %, scattering <3 %, and a reflection coefficient below 0.5 % across the visible range, with a much smaller number of layers than would be predicted by a standard thin film calculation. The TiO2 nanoparticles contribute more to the enhanced refractive index of the high-index layers than can be accounted for by an effective medium model of the nanocomposite.  相似文献   

5.
In this paper, we presented a solution-processed photodetector with a configuration of field-effect transistor Au/poly(3-hexylthiophene) (P3HT)/poly(methyl methacrylate) (PMMA)/Al, in which P3HT acts as the active layer and PMMA as dielectric layer, and the drain and source electrodes (Au) were fabricated through a shadow mask. Using the top-gate bottom-contact configuration and employing orthogonal solvent to avoid “solution corrosion”, the devices with three different thicknesses (38, 150 and 223 nm) of the P3HT layer were investigated, and all of them showed typical transistor properties and their drain–source current can be controlled by the gate voltage. The photocurrent of the device Au/P3HT(223 nm)/PMMA(930 nm)/Al shows an obvious increment over a broad range of wavelengths from 350 to 650 nm, giving a maximum photo-to-dark current ratio of 2,404 with a photoresponsivity of 22.71 mA/W under the incident 350 nm light at V DS = ?5 V.  相似文献   

6.
Within a microscopic approach the structure of Neutron Stars is usually studied by modelling the homogeneous nuclear matter of the core by a suitable Equation of State, based on a many-body theory, and the crust by a functional based on a more phenomenological approach. We present the first calculation of Neutron Star overall structure by adopting for the core an Equation of State derived from the Brueckner-Hartree-Fock theory and for the crust, including the pasta phase, an Energy Density Functional based on the same Equation of State, and which is able to describe accurately the binding energy of nuclei throughout the mass table. Comparison with other approaches is discussed. The relevance of the crust Equation of State for the Neutron Star radius is particularly emphasised.  相似文献   

7.
Polyvinylidene fluoride (PVDF) and polyvinyl alcohol (PVA) composites were prepared by controlled loading of Nafion (5 to 15 wt%) by solution casting using water and dimethylformamide (DMF) as a solvent. The surface morphology of composite analyzed by atomic force microscopy (AFM) reveals the presence of Nafion ionomers. The increase in interlayer spacing of modified PVDF/PVA polymer system as a function of Nafion was detected by X-ray diffraction (XRD). The major change in Fourier transform infrared (FTIR) spectroscopy confirms the chemical bond C=O stretching around 1,700 cm?1 due to Nafion. Differential scanning calorimetry (DSC) demonstrates the thermal stability of polymer composites and the decrease in melting temperature (T m). The optimized AC conductivity (σ) of the prepared composite was evaluated by using an impedance analyzer as a function of temperature (40 to 150 °C) at constant 30-MHz frequency. The highest conductivity of 1.3?×?10?2 S m?1 was observed at 80 °C for 10 wt% of Nafion and correlated with structure, morphology and thermal properties of modified PVDF/PVA/Nafion composites. The experimental results may be useful for sensors, fuel cells and battery application domains.  相似文献   

8.
Localized surface plasmon resonance (LSPR) wavelength of metal nanoparticles (NPs) is highly sensitive to size, shape and the surrounding medium. Metal targets were laser ablated in liquid for preparation of spherical Ag and Ag@Au core–shell NP colloidal solution for refractive index sensing. The LSPR peak wavelength and broadening of the NPs were monitored in different refractive index liquid. Quasi-static Mie theory simulation results show that refractive index sensitivity of Ag, Ag–Au alloy and Ag@Au core–shell NPs increases nearly linearly with size and shell thickness. However, the increased broadening of the LSPR peak with size, alloy concentration and Au shell thickness restricts the sensing resolution of these NPs. Figure-of-merit (FOM) was calculated to optimize the size of Ag NPs, concentration of Ag–Au alloy NPs and Au shell thickness of Ag@Au core–shell NPs. The refractive index sensitivity (RIS) and FOM were optimum in the size range 20–40 nm for Ag NPs. Laser generated Ag@Au NPs of Au shell thickness in the range of 1–2 nm showed optimum FOM, where thin layer of Au coating can improve the stability of Ag NPs.  相似文献   

9.
Practical and technical considerations for an instrument designed to measure high magnetic fields by Faraday effect are given. Magnetic fields up to 2 Tesla were measured and the results compared to those of Nuclear Magnetic Resonance technique. Results of measurements at low temperatures are also reported.  相似文献   

10.
A terahertz (THz) photomixer: (i) a meander type antenna with integrated nanoelectrodes on (ii) a low temperature grown GaAs has been fabricated and characterized. It was designed for spectral range of 0.3–0.4 THz where molecular fingerprinting and sensing are performed. By combination of electron beam lithography with post-processing using focused ion beam (FIB), milling the THz emitter was successfully fabricated. Nanogaps as small as 40 nm width in the active area of photomixer were milled by FIB. Nanocontacts enhance electric fields of the illuminated and THz radiation and contribute to a better collection of photo-electrons. THz emission was obtained and spectrally characterized.  相似文献   

11.
The mammalian target of rapamycin (mTOR) is an anti-cancer target. In this study, we propose an in silico protocol for identifying mTOR inhibitors from the ZINC natural product database. First, a three-dimensional quantitative structure–activity relationship pharmacophore model was built based on known mTOR inhibitors. The model was validated with an external test set, Fischer’s randomization method, a decoy set and pharmacophore mapping conformation testing. The results showed that the model can predict the mTOR inhibition activity of the tested compounds. Virtual screening was performed based on the best pharmacophore model, and the results were then filtered using a molecular docking approach. In addition, molecular mechanics/generalized born surface area analysis was used to refine the selected candidates. The top 20 natural products were selected as potential mTOR inhibitors, and their structural scaffolds could serve as building blocks in designing drug-like molecules for mTOR inhibition.  相似文献   

12.
SiO2–Au core-cap nanostructure arrays were prepared by dip-coating technique combined with wet chemical reduction method. The surface morphologies, structures, and optical properties of the obtained samples were characterized by scanning electron microscopy, X-ray diffraction, and ultraviolet–visible spectrophotometer, respectively. The surface-enhanced Raman scattering (SERS) activity of SiO2–Au core-cap nanostructure arrays substrates was investigated using leucine as probe molecule. And the relationship between the SERS effect and the surface plasmon resonance (SPR) peaks was discussed. High-quality, stable, and reproducible SERS spectra of leucine were successfully obtained. When the maximum SPR peak matched with the excitation wavelength, the substrate gave rise to the highest SERS enhancement. Furthermore, six different fluorescent dyes were also chosen as probe molecules. It was found that the substrate showed good Raman enhancement and highly efficient fluorescence quenching characteristic on these fluorescent dyes.  相似文献   

13.
Using 1–5 MeV Xenon ions we have studied the beam-foil spectrum of Xenon between 105 nm and 500 nm. Radiative lifetimes were measured for levels of Xenon III. For those lifetimes which have been measured previously (Andersen et al. [l]) good agreement is obtained. The interpretation of the decay curves and the assignment of a measured value, were done with the help of theoretical lifetimes obtained by Coulomb-approximation calculations [2].  相似文献   

14.
The KLL Auger spectrum of fluorine (Z=9) has been studied in three different fluoride salts. Five Auger lines are observed in each compound in accordance with extreme LS coupling theory. A cation dependence of the Auger transition energies and line-widths is observed. The energy shifts are in agreement with a theoretical model.  相似文献   

15.
We demonstrate the qualitative analysis of surface-enhanced Raman scattering (SERS) intensity and optical extinction by experimentally and numerically. This analytical methods are well matched not only the simple square lattice array of nanostructures, but also the rectangular lattices. We also demonstrate SERS selectivity of modes controlling the optical extinction of excitation and scattering wavelength. Both square lattice and rectangular lattice have similar tendency, but the rectangular lattice structures have much higher selectivity of SERS modes.  相似文献   

16.
Double-walled core-shell structured Si@SiO2@C nanocomposite has been prepared by calcination of silicon nanoparticles in air and subsequent carbon coating. The obtained Si@SiO2@C nanocomposite demonstrates a reversible specific capacity of about 786 mAh g?1 after 100 cycles at a current density of 100 mA g?1 with a capacity fading of 0.13 % per cycle. The enhanced electrochemical performance can be due to that the double walls of carbon and SiO2 improve the electronic conductivity and enhance the compatibility of electrode materials and electrolyte as a result of accommodating the significant volumetric change during cycles. The interlayer SiO2 may release the mechanical strain and enhance the interfacial adhesion between carbon shell and silicon core.  相似文献   

17.
18.
c-Axis-oriented aluminum nitride (AlN) thin film with improved quality was deposited on Si(111) substrate using ZnO buffer layer by plasma-assisted hot filament chemical vapor deposition. The optical and electrical properties and surface morphology as well as elemental composition of the AlN films deposited with and without ZnO buffer layer were investigated using a host of measurement techniques: X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, field emission scanning electron microscopy (FESEM), and current–voltage (I–V) characteristic measurement. The XRD and XPS results reveal that the AlN/ZnO/Si films are free of metallic Al particles. Also, cross-sectional FESEM observations suggest formation of a well-aligned, uniform, continuous, and highly (002) oriented structure for a bi-layered AlN film when Si(111) is covered with ZnO buffer. Moreover, a decrease in full width at half maximum of the E2 (high)-mode peak in Raman spectrum indicates a better crystallinity for the AlN films formed on ZnO/Si substrate. Finally, I–V curves obtained indicate that the electrical behavior of the AlN thin films switches from conductive to insulative when film is grown on a ZnO-buffered Si substrate.  相似文献   

19.
Radiative lifetimes were measured for levels of Xenon II by use of the beam-foil technique. Results are compared with other experimental and theoretical data. The coulomb approximation [1] was used to calculate lifetimes of the higher levels of Xenon II to facilitate an unambiguous assignment of the measured lifetime to a level.  相似文献   

20.
Dielectric–metal–dielectric sandwich structures have been fabricated on top of an InGaAs/GaAs single quantum well (QW) structure to enhance atomic interdiffusion across the QW interfaces at elevated temperature during rapid thermal annealing using a halogen lamp as the heating source. The QW intermixing enhancement is realized during rapid thermal annealing. By placing a properly designed SiO2–Ag–SiO2 structure on top of the QW sample, a blueshift in photoluminescence emission from 920 to 882 nm was observed, larger than that obtained in a SiO2-capped QW annealed at the same condition. Finite-difference time-domain simulation and optical reflectance measurements showed that the enhanced QW intermixing is due to the plasmonic resonance-enhanced light absorption and suppressed light reflection from the SiO2–Ag–SiO2 structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号