首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Operation performance characteristics of vertical-cavity surface-emitting lasers (VCSELs) under high thermal neutron irradiated fields
Authors:Ahmed Nabih Zaki Rashed  Mohamed A Metawe’e
Institution:1. Electronics and Electrical Communications Engineering Department Faculty of Electronic Engineering, Menoufia University, Menouf, 32951, Egypt
Abstract:To operate and read out even the innermost detectors under any particular conditions, electronics and optical components must be developed accordingly. For semiconductor lasers, on which we will concentrate here, it has been found that an inner temperature increase has a direct impact on the light power emitted by the device. It was found that the effects of radiation on the behavior of semiconductor lasers are convolved with those of temperature. An optimized coupling to the cooling of the laser device reduces the thermal effects in the material. Therefore, a test stand to qualify the effect of heat in the device and the adoption of the heat sink is realized. In this paper, we create a model describing the degradation of the light power and voltage characteristic of a semiconductor-laser undergoing irradiation where the high temperature effects are taken into account. This VCSEL-device model can be used to predict the behavior and operation-performance characteristics (rise time, 3 dB bandwidth, light power, resonance frequency, and transmission bit rate) of a laser being irradiated with different neutron doses. We check the robustness of the model against the high fluence (in excess of 1015 neutrons/cm2). We take into account the study of different semiconductor- and polymeric material-based VCSEL devices such as aluminum gallium arsenide (AlGaAs), indium gallium arsenide phosphors (InGaAsP), and polymeric polymethylmethacrylate (PMMA) under the same operating conditions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号