首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Steady state and time resolved fluorescence quenching behaviors of meso-Tetrakis (pentafluorophenyl) porphyrin (H2F20TPP) in presence of different aliphatic and aromatic amines have been executed in homogeneous dichloromethane (DCM) solution. At room temperature in DCM, free base (H2F20TPP) shows fluorescence with two distinct peaks at 640 and 711 nm and natural lifetime τ f = 9.8 ns which are very similar to that of meso-tetraphenyl porphyrin (TPP). Unlike TPP, addition of both aliphatic and aromatic amines to a solution containing H2F20TPP results in an efficient decrease in fluorescence intensity without altering the shape and peak position of fluorescence emission. Upon addition of amines there was no change in optical absorption spectra of H2F20TPP. The fluorescence quenching rate constants ranged from 1 × 109 to 4 × 109 s−1, which are one order below to the diffusion control limit, and temperature dependent quenching rate constants yield the activation energies which are found to be order of 0.1 eV. Femto second transient absorption studies reveal the existence of amine cation radical and porphyrin anion radicals with very short decay time (15 ps). The fluorescence quenching reaction follows Stern–Volmer kinetics. Steady state and time-resolved data are interpreted within general kinetic scheme of Marcus semi-classical model which attributes bimolecular electron transfer process between amines and the lowest excited singlet state of H2F20TPP. Calculated internal reorganization energies are found to be in between 0.04 and 0.22 ev. Variation of electron transfer rate as function of free energy change (∆G0) points the ET reactions in the present systems are in Marcus normal region. This is the first example of reductive fluorescence quenching of free base neutral porphyrins in homogeneous organic solvent ever known.  相似文献   

2.
Wang G  Wang L  Tang W  Hao X  Wang Y  Lu Y 《Journal of fluorescence》2011,21(5):1879-1886
The binding of quercetin to lysozyme (LYSO) in aqueous solution was investigated by fluorescence spectroscopy, UV-vis absorption spectroscopy and molecular simulation at pH 7.4. The fluorescence quenching of LYSO by addition of quercetin is due to static quenching, the binding constants, K a , were 3.63 × 104, 3.31 × 104 and 2.85 × 104 L·mol−1 at 288, 298 and 308 K, respectively. The thermodynamic parameters, enthalpy change, ∆H, and entropy change, ∆S, were noted to be −7.56 kJ·mol−1 and 61.07 J·mol−1·K−1. The results indicated that hydrophobic interaction may play a major role in the binding process. The distance r between the donor (LYSO) and acceptor (quercetin) was determined as 3.34 nm by the fluorescence resonance energy transfer. The synchronous fluorescence spectroscopy showed the polarity around the tryptophan residues increased and the hydrophobicity decreased. Furthermore, the study of molecular simulation indicated that quercetin could bind to the active site (a pocket made up of 24 amino-acid residues) of LYSO mainly via hydrophobic interactions and that there were hydrogen interactions between the residues (Gln 57, Ile 98) of LYSO and quercetin. The accessible surface area (ASA) calculation verified the important roles of tryptophan (Trp) residues during the binding process.  相似文献   

3.
4.
The effect of Pb2+ targeted to bovine serum albumin (BSA) in vitro was investigated by fluorescence, synchronous fluorescence, UV absorption and circular dichroism (CD) spectrophotometry. The characteristic fluorescence of BSA was quenched, which indicated that Pb2+ changed the skeleton of BSA and caused the gradual exposure of aromatic amino acid residues (Trp, Tyr, Phe) in the internal hydrophobic region of BSA. When the concentration of Pb2+ was higher than 1 × 10−4 mol/L, the BSA was completely denatured. The excess lead ion interacted with the aromatic amino acid residues of BSA exposed to the solution, which decreased the fluorescence of BSA further. According to the experiment results, we found that a lead-BSA complex was formed following static quenching and the binding site was calculated approximately equal to 1. This work reflected the interaction mechanism of BSA and Pb2+ from the perspective of spectroscopy.  相似文献   

5.
Spectral properties of novel type of fluorophores consist of a π-conjugated system end-capped with an electron-donating N,N-dimethylaminophenyl group and an electron-withdrawing imidazole-4,5-dicarbonitrile moiety were examined. An additional π-linker separating these two structural units comprises simple bond (B1P), phenyl (B2B), styryl (B3S) and ethynylphenyl (B4A) moieties. The absorption and fluorescence spectra were taken in cyclohexane, chloroform, acetonitrile, methanol and in polymer matrices such as polystyrene, poly(methyl methacrylate) and poly(vinylchloride). The longest-wavelength absorption band was observed in the range of 300 to 400 nm. Intense fluorescence with quantum yields of 0.2 to 1.0 was observed in cyclohexane, chloroform and in polymer matrices within the range of 380 to 500 nm. The fluorescence was strongly quenched in neat acetonitrile and methanol. The fluorescence lifetimes are in the range of 1–4 ns for all measured fluorophores. The large Stokes shift (4,000 to 8,000 cm−1) indicates a large difference in the spatial arrangement of the chromophore in the absorbing and the emitting states. The observed fluorescence of all fluorophores in chloroform was quenched by 1-oxo-2,2,6,6-tetramethyl-4-hydroxy piperidine by the diffusion-controlled bimolecular rate (cca 2 × 1010 L mol−1 s−1). Polar solvents such as acetonitrile and methanol quenched the fluorescence as well but probably via a different mechanism.  相似文献   

6.
Water-soluble Mn2+-doped ZnS quantum dots (QDs) were prepared using mercaptoacetic acid as the stabilizer. The optical properties and structure features were characterized by X-Ray, absorption spectrum, IR spectrum and fluorescence spectrum. In pH 7.8 Tris-HCl buffer, the QDs emitted strong fluorescence peaked at 590 nm with excitation wavelength at 300 nm. The presence of sulfide anion resulted in the quenching of fluorescence and the intensity decrease was proportional to the S2− concentration. The linear range was from 2.5 × 10−6 to 3.8 × 10−5 mol L−1 with detection limit as 1.5 × 10−7 mol L−1. Most anions such as F, Cl, Br, I, CH3CO2 , ClO4 , CO3 2−, NO2 , NO3 , S2O3 2−, SO3 2− and SO4 2− did not interfere with the determination. Thus a highly selective assay was proposed and applied to the determination of S2− in discharged water with the recovery of ca. 103%.  相似文献   

7.
The spectral-luminescent characteristics of newly synthesized styrylcyanine dyes on the base of dyes Sbo ((E)-2-(4-(dimethylamino)styryl)-3-methylbenzo[d]oxazol-3-ium iodide) and Sil ((E)-2-(4-(dimethylamino)styryl)-1,3,3-trimethyl-3H-indolium perchlorate) in aqueous solutions without and in the presence of bovine serum albumin (BSA) were studied. It was established that the absorption spectra of dyes Tol-6, Dbo-10 and Dil-10 with increasing amount of BSA appear new bands with λmax = 505 nm, λmax = 512 nm and λmax = 566 nm, respectively, whose intensity increases in proportion to the amount of albumin. The intensity of the glow of the main band of fluorescence in the presence of BSA sharply increases. The binding constant (K) and the number of binding sites (N) of studied dyes with BSA were determined. The dependence of binding constants with BSA on the dipole moment of dye molecules was determined, which indicates that besides electrostatic forces of attraction between molecules styrylcyanine dyes with BSA, hydrophobic interactions are essential.  相似文献   

8.
A fluorimetric method based on fluorescence enhancement effect was developed for the determination of adenosine 5′-monophosphate (AMP) with 9-anthracene carboxylic acid (9-ANCA)–cetyl trimethyl ammonium bromide (CTAB) system. Fluorescence intensity of 9-ANCA was decreased by the addition of CTAB but addition of AMP again rose the intensity of 9-ANCA gradually. The observed fluorescence enhancement is attributed to the competitive binding reaction of 9-ANCA and adenosine to CTAB. The enhancement in the fluorescence intensity was found proportional to the concentration of AMP over the range 2.0 × 10−4 to 1.2 × 10−3 mol dm−3. The ion pair complex is formed spontaneously between 9-ANCA and CTAB. Since the binding interaction is larger for the adenosine–CTAB pair, the fluorophore 9-ANCA will be released. The quantum yield of free 9-ANCA is higher therefore its fluorescence observed at 417 nm wavelength is enhanced. This mechanism of competitive molecular interaction is further confirmed by conductometric measurements. The method was applied successfully for the determination of AMP from pharmaceutical sample. The method is more selective, sensitive and relatively free from interferences.  相似文献   

9.
The interaction between a classic uncoupler (2,4-dinitrophenol, DNP) and bovine serum albumin (BSA) was investigated by fluorescence spectroscopy under the physiological conditions. The fluorescence quenching constants were calculated by the Stern-Volmer equation, and based upon the temperature dependence of quenching constants, it was proved that DNP caused a static quenching of the intrinsic fluorescence of BSA. Owing to the static quenching mechanism, different associative binding constants at various temperatures were determined and thus the thermodynamic parameters, namely enthalpy (ΔH = −21.12 kJ mol−1) and entropy changes (ΔS = 23.51 J mol−1 K−1) could be calculated based on the binding constants. Moreover, the enthalpy and entropy changes are consistent with the “Enthalpy-Entropy Compensation” equation obtained from our previous work. The negative enthalpy and positive entropy indicated that the electrostatic interactions played a major role in DNP-BSA binding process. Site marker competitive displacement experiments were carried out by using fluorescence and isothermal titration calorimetry (ITC) methods. These results showed that DNP bound with high affinity to Sudlow’s site I (subdomain IIA) of BSA. The distance (r = 3.78 nm) between donor (BSA) and acceptor (DNP) was obtained according to the mechanism of fluorescence resonance energy transfer (FRET). Furthermore, the results of synchronous fluorescence and circular dichroism (CD) spectroscopic studies indicated that the microenvironment and the secondary conformation of BSA were altered. The above results were supported by theoretical molecular modeling methods.  相似文献   

10.
Tetra[α-(4-hydroxyphenoxy)] zinc phthalocyanine, ZnPc(α-OPhOH)4, was synthesized and its photophysics was found to be sharply pH dependent. Dual fluorescence emission around 700 nm was observed when it is dissolved in basic solution. The fluorescence of the phthalocyanine can be sharply switched off at pH 9.1 due to the intramolecular photoinduced electron transfer (PET) in ZnPc(α-OPhONa)4, formed by the deprotonation of ZnPc(α-OPhOH)4. The photophysics of both ZnPc(α-OPhOH)4 and ZnPc(α-OPhONa)4 were studied in detail by UV-vis absorption, steady state and time-resolved fluorescence and transient absorption (TA) to reveal the fluorescence quenching mechanism. Intra-molecular PET in ZnPc(α-OPhONa)4 from the donor, PhONa subunits, to the acceptor, ZnPc moiety, was characterized by the much smaller fluorescence quantum yield (0.003) and lifetime (<0.20 ns). PET was further evidenced by the occurrence of charge separation state (CSS) in TA spectra, i.e. the bands due to anion radical of ZnPc and phenol radical. The lifetime of the charge separation state is ca. 3 ns, the efficiency of PET is ca. 99% and the rate constant of PET is 2.3 × 1010 s−1.  相似文献   

11.
A new, simple and accurate spectrofluorimetric method for the determination of metoclopramide hydrochloride was developed. The metoclopramide hydrochloride can remarkably enhance the luminescence intensity of the Tb3+ ion doped in PMMA matrix at λex = 360 nm in methanol at pH 6.9. The intensity of the emission band at 545 nm of Tb3+ ion doped in PMMA matrix is increased due to the energy transfer from metoclopramide hydrochloride to Tb3+ in the excited stated. The effect of different parameters, e.g., pH, temperature, Tb3+ concentration, foreign ions that control the fluorescence intensity of the produced ion associate was critically investigated. The calibration curve of the emission intensity at 545 nm shows linear response of metoclopramide over a concentration range of 5 × 10−5–5.0 × 10−8 M with detection limit of 8.7 × 10−10 M. The method was used successfully for the determination of metoclopramide in pharmaceutical preparations and human serum. The average recovery of 99.48% with standard deviation of 0.32% and 96.98% with standard deviation of 0.4%, of pharmaceutical preparations and human serum respectively, were obtained which compared will with the results obtained from standard LC method of average recovery 99.04% and standard deviation of 0.6% and average recovery of 98.19% with standard deviation of 0.6% of pharmaceutical preparations and human serum, respectively.  相似文献   

12.
The results of the spectroscopic analysis of transition strengths for Er3+ ions in a series of Hf:Er:LiNbO3 crystals with variable Hf content and fixed Er content are reported. Unpolarized UV-VIS-NIR absorption spectra, upconversion fluorescence spectra excited at 800 nm, and microsecond time-resolved spectra excited at 400 nm and 800 nm by 800 nm femtosecond laser were measured at room temperature. The HfO2 incorporation has influence on Er3+ radiative lifetimes, and fluorescence branching ratios. For Hf(4 mol %):Er(1 mol %):LiNbO3, Ω2=2.63×10-20 cm2, Ω4=2.86×10-20 cm2, and Ω6=0.72×10-20 cm2. Ω24 is contrary to the Er3+ general trend of Ω246 when the Hf content is below its threshold concentration. In addition, the sum of Ω increases with the Hf content when the HfO2 content below 6 mol % is unfamiliar. The upconversion mechanism is discussed in this work. PACS 71.20.Eh; 77.84.Dy; 42.62.Fi; 42.65.Ky  相似文献   

13.
SrMoO4 doped with rare earth are still scarce nowadays and have attracted great attention due to their applications as scintillating materials in electro-optical like solid-state lasers and optical fibers, for instance. In this work Sr1−xEuxMoO4 powders, where x = 0.01; 0.03 and 0.05, were synthesized by Complex Polymerization (CP) Method. The structural and optical properties of the SrMoO4:Eu3+ were analyzed by powder X-ray diffraction patterns, Fourier Transform Infra-Red (FTIR), Raman Spectroscopy, and through Photoluminescent Measurements (PL). Only a crystalline scheelite-type phase was obtained when the powders were heat-treated at 800 °C for 2 h, 2θ = 27.8° (100% peak). The excitation spectra of the SrMoO4:Eu3+Em. = 614 nm) presented the characteristic band of the Eu3 + 5L6 transition at 394 nm and a broad band at around 288 nm ascribed to the charge-transfer from the O (2p) state to the Mo (4d) one in the SrMoO4 matrix. The emission spectra of the SrMoO4:Eu3+ powders (λExc. = 394 and 288 nm) show the group of sharp emission bands among 523–554 nm and 578–699 nm, assigned to the 5D17F0,1and 2 and 5D07F0,1,2,3 and 4, respectively. The band related to the 5D07F0 transition indicates the presence of Eu3+ site without inversion center. This hypothesis is strengthened by the fact that the band referent to the 5D07F2 transition is the most intense in the emission spectra.  相似文献   

14.
A simple, rapid and effective analytical method based on fluorescence spectroscopy for the determination of coumarin in pharmaceutical formulations without pre-treatment or pre-concentration step was development. Coumarin had maximum excitation and emission at 310 nm and 390 nm, respectively. Optimum conditions for the detection of coumarin were investigated. Under optimized conditions, we observed a linear behavior for the sign of coumarin in the concentration range of 2.5 × 10−6 to 1.0 × 10−4 mol L−1, with linearity of 0.998 and sensitivity of 2.9 × 1010 u.a/mol L−1. The proposed method was validated in terms of accuracy, precision and specificity of coumarin using the standard addition and external calibration. It was noted that the results support (P < 0.05), indicating that the matrices were not an interference in the determination of coumarin by fluorescence spectroscopy. The results were favorable compared with those obtained by reference chromatographic methods.  相似文献   

15.
A new, simple, sensitive and selective spectrofluorimetric method for the determination of Hydrochlorothiazide was developed in acetonitrile at pH 6.2. The Hydrochlorothiazide can remarkably enhance the luminescence intensity of the Tb3+ ion doped in sol–gel matrix at λex = 370 nm. The intensity of the emission band of Tb3+ ion doped in sol–gel matrix was increased due to the energy transfer from the triplet excited state of Hydrochlorothiazide to (5D4) excited energy state of Tb3 ion. The enhancement of the emission band of Tb3+ ion doped in sol–gel matrix at (5D47 F5) 545 nm was directly proportion to the concentration of Hydrochlorothiazide with a dynamic ranges of 5.0 × 10−10—5.0 × 10−6 mol L−1 and detection limit of 2.2 × 10−11 mol L−1.  相似文献   

16.
Characterization of the interaction between methylene blue (MB) and calf thymus deoxyribonucleic acid (ctDNA) was investigated by UV absorption spectra, fluorescence spectra, fluorescence polarization and fluorescence quenching experiments by ferrocyanide. The above results indicated that the binding modes of MB to ctDNA were relative to the molar ratio γ (γ=[DNA]/[MB]). At low γ ratios (γ < 4), remarkable hypochromic effect with no shift of λmax in the absorption spectra of MB was observed in the presence of increasing amounts of ctDNA, the fluorescence of MB was efficiently quenched by the ctDNA bases and the fluorescence polarization of MB was slightly increased, which indicated that MB cations bound to phosphate groups of ctDNA by electrostatic interaction and then stacked on the surface of ctDNA helix. While at high γ ratios (γ > 6), besides the fluorescence of MB was quenched efficiently by the ctDNA bases, a red shift (about 3 nm) in the absorption spectra of MB was observed and the fluorescence polarization of MB was obviously increased, which indicated the intercalation binding that MB molecules were intercalated into the space of two neighbouring DNA base pairs was the preferred mode. Effects of K4Fe(CN)6 on the fluorescence quenching of the MB-ctDNA system at low and high γ ratios were also performed. The results showed that at γ = 1.7, the quenching effect by ferrocyanide was higher than that of pure MB, while at γ = 13.6 a decreased quenching of the fluorescence intensity was observed as compared with that of pure MB, which further proved the above conclusion. In addition, the mechanisms of the hypochromic effect and the fluorescence quenching were also discussed in detail.  相似文献   

17.
The interaction of a N-methylated diaminotriphenylmethane dye, malachite green, with lysozyme was investigated by fluorescence spectroscopic techniques under physiological conditions. The binding parameters have been evaluated by fluorescence quenching methods. The results revealed that malachite green caused the fluorescence quenching of lysozyme through a static quenching procedure. The thermodynamic parameters like ΔH and ΔS were calculated to be −15.33 kJ mol−1 and 19.47 J mol−1 K−1 according to van’t Hoff equation, respectively, which proves main interaction between malachite green and lysozyme is hydrophobic forces and hydrogen bond contact. The distance r between donor (lysozyme) and acceptor (malachite green) was obtained to be 3.82 nm according to Fӧrster’s theory. The results of synchronous fluorescence, UV/vis and three-dimensional fluorescence spectra showed that binding of malachite green with lysozyme can induce conformational changes in lysozyme. In addition, the effects of common ions on the constants of lysozyme-malachite green complex were also discussed.  相似文献   

18.
The interaction between thyroxine hormone and 7 hydroxycoumarin (7HC) was investigated using fluorescence quenching method. The experimental results showed that thyroxine could quench the fluorescence of 7HC by forming the 7HC–thyroxine complex with static quenching. The apparent binding constants (K) between 7HC and thyroxine were determined to be 1.51 × 104 (297 K) and 9.06 × 103 (310 K). The binding sites (n) 0.98 ± 0.1. The thermodynamic parameters showed that the interaction between 7HC and thyroxine was driven mainly by hydrogen bonding interactions and van der Waals force. Calibration for thyroxine, based on quenching titration data, was linear in the concentration range 2.0 × 10−8 to 3.0 × 10−7 mol/l. The relative standard deviation was 2.58% for 2.0 × 10−7 mol/l thyroxine (n = 4) and the 3σ limit of detection was 3.42 × 10−8 mol/l in cationic surfactant CTAB medium.  相似文献   

19.
The efficiency of excited-state interaction between Tb3+ and the industrial product Cilostazol (CIL) has been studied in different solvents. High luminescence intensity peak at 545 nm of terbium complex in acetonitrile was obtained. The photophysical properties of the green emissive Tb3+ complex have been elucidated, the terbium was used as optical sensor for the assessment of CIL in the pharmaceutical tablets and body fluids at pH 3.1 and λex = 320 nm with a concentration range 1.0 × 10−9–1.0 × 10−6 mol L−1 of CIL, correlation coefficient of 0.998 and detection limit of 7.5 × 10−10 mol L−1.  相似文献   

20.
A series of double molybdates phosphors AEu(MoO4)2 (A = Li, Na, K and Ag) have been prepared by sol-gel method. Their crystal structure and luminescent properties have also been investigated in a comparable way. The crystallization processes of the phosphor precursors were characterized by X-ray diffraction (XRD) and thermogravimetry-differential thermal analysis (TG-DTA). Field emission scanning electron microscopy (FE-SEM) was also used to characterize the shape and size distribution of the phosphors. Samples except KEu(MoO4)2 showed tetragonal scheelite structure in the range of our experiments, and no phase transition appeared. Phosphor KEu(MoO4)2 possessed two structures, and the phase transition took place at about 800°C. All samples with high purity could be obtained at about 500°C for 5 hours, and they all showed intense red light peaked at 616 nm originated from 5D07F2 emission of Eu3+ under the excitation of 465 nm or 394 nm light. The excitation spectra of phosphors AEu(MoO4)2 (A = Li, Na, and K) are composed of a strong broad charge transfer (CT) band and some sharp lines, and the relative intensity of CT band, the two strongest absorption lines at 395 nm and 465 nm are comparative, so these three phosphors are good red phosphor candidates for violet or blue LEDs. For the excitation spectrum of phosphor AgEu(MoO4)2, intensities of CT band and the absorption line at 395 nm are much weaker than that of line at 465 nm, thus phosphor AgEu(MoO4)2 is only suit for GaN-based blue LED.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号