首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of cluster formation during the vacuum condensation of thin films from a single-component vapor is investigated by numerically solving the system of kinetic equations. The size distributions of clusters containing from a few atoms to several hundred atoms are obtained. The regions of dominant nucleation on active centers (point defects of the crystal substrate) and random nucleation are determined in the “condensation rate-temperature” coordinates. It is demonstrated that the regions corresponding to the pseudolayer and three-dimensional (rough) growth mechanisms can be separated in the condensation rate-temperature coordinates. The inference is made that the experimentally observed bimodal size distributions of islands can be associated with the difference between the growth rates of clusters at the stage preceding the coalescence.  相似文献   

2.
The room temperature deposition of PTCDA on hydrogen passivated Si(1 1 1), as a function of evaporation temperature and dosing time, has been studied by STM. At low evaporation temperature, 200 °C, clusters with an average size of 3.5 nm are formed on the surface. The mobility of the small clusters is so high, even at room temperature, that most of the clusters are trapped at surface defects. By increasing the evaporation temperature to 230 °C, larger clusters are formed which have lower mobility. The growth process is identified as a Volmer-Weber mechanism. On increasing the evaporation temperature further to 250 °C, crystals with dendritic shape are formed with an average size of 150 nm. The terraces of the crystal are formed with the (1 0 2) basal plane of the α-phase. Molecular resolution on the terrace also allows us to identify the molecular mechanism involved in the growth of the dendritic crystals.  相似文献   

3.
A Kinetic Monte Carlo simulation of the nucleation and growth of Pd clusters on a nanostructured alumina substrate is presented. The new Monte Carlo simulation program allows to derive the 3D shape of the growing clusters without performing a full all atoms simulation. The simulation shows, like in previous pure 2D simulations, that clusters nucleate exclusively on the defects of the nanostructure in a limited range of substrate temperature. Around 300 K, the clusters have a compact faceted shape and they grow, at not too large coverage, layer by layer. These results are in agreement with previous studies of the nucleation and growth of Pd clusters on an ultrathin alumina film on Ni3Al (1 1 1).  相似文献   

4.
团簇淀积纳米结构薄膜的计算机模拟   总被引:1,自引:0,他引:1  
对团簇的淀积方式作了简介。着重对团簇的淀积过程进行了计算机模拟,从中得出了淀积的尺寸分布与团簇在衬底上的徙动长度有关,而团簇的聚合长大存在一临界尺寸。并给出低能Pb团簇在碳膜表面的徙动长度和聚合的临界尺寸。  相似文献   

5.
Noble metals that are deposited on a polymer surface exhibit surface diffusion and diffusion into the bulk. At the same time the metal atoms tend to form clusters because their cohesive energy is about two orders of magnitude higher than the cohesive energy of polymers. To selfconsistently simulate these coupled processes, we present in this paper a Kinetic Monte Carlo approach. Using a simple model with diffusion coefficients taken as input parameters allows us to perform a systematic study of the behavior of a large ensemble of metal atoms on a polymer surface eventually leading to polymer nanocomposites. Special emphasis is placed on the cluster growth, cluster size distribution and the penetration of clusters into the substrate. We also study the influence of surface defects and analyze how the properties of the resulting material can be controlled by variation of the deposition rate (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
To investigate the early stages of nucleation and growth of As precipitates in GaAs grown at low substrate temperature, we make use of a self-consistent-charge density-functional based tight-binding method. Since a pair of As antisites already shows a significant binding energy which increases when more As antisites are attached, there is no critical nucleus size. Provided that all excess As has precipitated, the clusters may grow in size since the binding energies increase with increasing agglomeration size. These findings close the gap between experimental investigation of point defects and the detection of nanometer-size precipitates in transmission electron microscopy.  相似文献   

7.
Ni clusters with an average size of 4 nm, supported on MgO micro-cubes were studied by high resolution electron microscopy (HRTEM) and image simulations by the multislice technique. Regular defects were evidenced in the metal clusters at the interface. Molecular dynamic calculations of a 4 nm cluster indicates the same type of defects.  相似文献   

8.
Based on the results of pseudopotential calculations, the progression of a single interstitial into small compact clusters and ultimately into chain-like defects is examined. For clusters that consist of more than eight interstitials, the capture of bond-centered interstitials reveals a change in the growth mechanism leading to enhanced stability of clusters. The five-interstitial model is proposed to be a plausible candidate for optically active W centers, observed in ion irradiated silicon.  相似文献   

9.
利用分子动力学模拟方法对Cu13团簇在Fe(001)表面上沉积薄膜进行了研究,分析了不同沉积条件对薄膜生长模式的影响,对比分析了不同沉积条件下表面粗糙度、缺陷分布和外延度等薄膜性质的差异。Cu13团簇的初始沉积能量范围为0.1~10.0 eV/atom,沉积率为1.0 clusters/ps,衬底温度分别为300,700和1 000 K。模拟结果表明:团簇初始沉积能量主要影响薄膜生长模式,当初始沉积能量为7.5 eV/atom的Cu13团簇沉积到温度为300 K的Fe(001)表面时,可形成表面光滑、内部缺陷少和较好外延度的高质量Cu薄膜。  相似文献   

10.
We study point defects patterning in irradiated α-zirconium numerically. In our consideration, we exploit reaction-rate theory by taking into account sink density dynamics and a change in internal stress fields due to the presence of defects. Dynamics of defect populations are studied at different irradiation conditions. It is found that point defects patterning is accompanied by a formation of vacancy clusters; their morphology change is governed by irradiation temperature and damage rate. By using statistical analysis of spatially distributed vacancy clusters, it was shown that the characteristic size of these clusters is of several nanometers. Vacancy clusters' occupation densities and distributions over their sizes are studied in detail.  相似文献   

11.
Most experiments on neutron or heavy-ion cascade-produced irradiation of pure metals and metallic alloys demonstrate unlimited void growth as well as development of the dislocation structure. In contrast, the theory of radiation damage predicts saturation of void size at sufficiently high irradiation doses and, accordingly, termination of accumulation of interstitial-type defects. It is shown in the present paper that, under conditions of steady production of one-dimensionally (1-D) mobile clusters of self-interstitial atoms (SIAs) in displacement cascades, any one of the following three conditions can result in indefinite damage accumulation. First, if the fraction of SIAs generated in the clustered form is smaller than some finite value of the order of the dislocation bias factor. Second, if solute, impurity or transmuted atoms form atmospheres around voids and repel the SIA clusters. Third, if spatial correlations between voids and other defects, such as second-phase precipitates or dislocations, exist that provide shadowing of voids from the SIA clusters. The driving force for the development of such correlations is the same as for void lattice formation and is argued to be always present under cascade-damage conditions. It is emphasised that the mean-free path of 1-D migrating SIA clusters is typically at least an order of magnitude longer than the average distance between microstructural defects; hence, spatial correlations on the same scale should be taken into consideration. A way of developing a predictive theory is discussed. An interpretation of the steady-state swelling rate of ~1%/displacement per atom (dpa) observed in austenitic steels is proposed.  相似文献   

12.
13.
The fundamental and technological importance of metal clusters and particles on oxide surfaces is growing. Here, room temperature deposited Ni clusters and particles on clean SrTiO3 (001) surfaces were analyzed with a UHV-TEM/STM combined system to investigate reaction, growth, morphology, and crystal structure consistently. STM observation revealed their growth process from isolated clusters almost of the size of the nuclei to bigger particles. From TEM observation, it was found that small clusters have a semi-commensurate epitaxial orientation relationship, but that bigger ones grow into an incommensurate cube-on-cube epitaxial orientation relationship. STS measurement on Ni particles caused field-induced diffusion of Ni atoms, in which piling up of Ni was recognized at the positions of the STM tips. This is assumed to be related with interfacial reaction.  相似文献   

14.
We study the specific impact of defects such as step edges at the graphite surface on the electronic configuration of adsorbed Pt atoms and Pt8 clusters. Surface diffusion is strongly reduced by depositing Pt and Pt8 into a thin rare gas layer. In this configuration a very narrow adatom Pt 4f spectrum is found at an exceptionally small binding energy, similar to Pt surfaces. Both, adatom and cluster spectra are strongly shifted towards higher binding energy when allowed to diffuse towards defects like step edges. The strong shifts are indicative of a chemical reaction at the step edges and are conjectured to be part of the particle size dependent binding energy shifts typically observed for transition metal clusters grown on the surface of graphite.  相似文献   

15.
The development of microstructure, under cascade-damage conditions, in regions far away from any major sink is considered. Within the mean-field theory, a homogeneous distribution of point defects and their clusters is a pre-imposed artificial constraint on the kinetic system. The resulting excessive recombination of the vacancies and interstitials at a high density of accumulated point-defect clusters dictates a low rate of void growth. Considerations beyond the mean-field theory, by taking into account the concentration fluctuations of both the point defects and their clusters, relax the restriction of the homogeneous distribution. In this paper, we consider a system without pre-existing sinks, except the void nuclei, in which vacancies, interstitials and their clusters are continuously produced. Taking into account the mobility of small clusters and the stochastic fluctuations of the point-defect fluxes, a kinetic theory is formulated from first principles. It is rigorously shown that through the stochastic fluctuations, and the positive-feedback action of the mobility of the small clusters on the interstitial concentration, the homogeneous interstitial distribution is unstable at temperatures above stage V, leading to the formation of a spatially heterogeneous microstructure in pure metals at low irradiation doses. The characteristics of the microstructure evolution and void swelling, predicted from the theory, are found to be in good agreement with the experimental results. Received: 17 March 2000 / Accepted: 17 October 2000 / Published online: 25 July 2001  相似文献   

16.
We study the self-organization of vacancy clusters in irradiated materials under reactor and accelerator conditions. Using a continuum stochastic model we take into account dynamics of point defects and their sinks with elastic interactions of vacancies. Dynamics of vacancy clusters formation is studied analytically and numerically. We have shown a difference in patterning dynamics at irradiation under reactor and accelerator conditions. The external noise influence related to fluctuation in a defect production rate is studied in detail. Applying our approach to pure nickel irradiated under different conditions we have shown that vacancy clusters having a linear size ~eq 6 nm can arrange in a statistical periodic structure with nano-meter range. We have found that the linear size of vacancy clusters at accelerator conditions decreases down to 20%, whereas a period of vacancy clusters reduces to 6.5%.  相似文献   

17.
邹雪晴  薛建明  王宇钢 《中国物理 B》2010,19(3):36102-036102
Physical and chemical phenomena of low-energy ion irradiation on solid surfaces have been studied systematically for many years, due to the wide applications in surface modification, ion implantation and thin-film growth. Recently the bombardment of nano-scale materials with low-energy ions gained much attention. Comared to bulk materials, nano-scale materials show different physical and chemical properties. In this article, we employed molecular dynamics simulations to study the damage caused by low-energy ion irradiation on copper nanowires. By simulating the ion bombardment of 5 different incident energies, namely, 1~keV, 2~keV, 3~keV, 4~keV and 5~keV, we found that the sputtering yield of the incident ion is linearly proportional to the energies of incident ions. Low-energy impacts mainly induce surface damage to the nanowires, and only a few bulk defects were observed. Surface vacancies and adatoms accumulated to form defect clusters on the surface, and their distribution are related to the type of crystal plane, e.g. surface vacancies prefer to stay on (100) plane, while adatoms prefer (110) plane. These results reveal that the size effect will influence the interaction between low-energy ion and nanowire.  相似文献   

18.
Copper-rich precipitates can nucleate and grow in ferritic steels containing small amounts of copper in solution and this affects mechanical properties. Growth kinetics, composition and structure of precipitates under irradiation are different from those under thermal ageing, and also vary with type of radiation. This implies that the interaction between radiation defects, i.e. vacancies, self-interstitial atoms (SIAs) and their clusters, and precipitates is influential. It is studied here by atomic-scale computer simulation. The results are compared with those of elasticity theory based on the size misfit of precipitates and defects, and the modulus difference between bcc iron and bcc copper. It is found that SIA defects are repelled by precipitates at large distance but, like vacancies, attracted at small distance. Copper precipitates in iron can, therefore, be sinks for both vacancy and interstitial defects and hence can act as recombination centres under irradiation conditions. A tentative explanation for the mixed Cu–Fe structure of precipitates observed in experiment and the absence of precipitate growth under neutron irradiation is given. More generally, agreement between the simulations and elasticity theory suggests that the results are not artefacts of the atomic model: both vacancy and interstitial defects in metals may bind to precipitates with weaker cohesion than the matrix.  相似文献   

19.
The thermal conductivity of pure and Mg-doped LiF single crystals irradiated at room temperature in a Co60 source (3–780 Mrad) was measured between 60mK and 70 K. Several phonon scattering mechanisms for extended defects are reviewed and it is shown that experimental results can be understood in terms of two types of interstitial clusters: (a) small spherical clusters whose number density and size depend on the residual impurity content; and (b) large non-spherical clusters of toroïdal shape with a major radius of several hundred Å and minor radius of some tens of Å. For increasing dose, the major radius decreases, the minor radius increases and the rings become increasingly opaque possibly due to the associated strain field.  相似文献   

20.
A phenomenological mixed-propagation model that describes the expansion of an ablation plume through a buffer gas is introduced. Selected experiments including LaMnO3 and tin ablation in oxygen, as well as tungsten ablation in argon, are analysed. For given ablation conditions the expansion parameters required to model the growth of clusters in the expanding plasma plume are deduced and the average asymptotic size of the clusters is calculated and compared (for tungsten) with the size of clusters measured by transmission electron microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号