首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An experimental photoelectron spectroscopy study is presented highlighting several aspects of importance for the study of deposited metal clusters and particles with photoemission. It is shown that the Fermi level is the correct energy reference for the core level binding energies. The choice of different deposition conditions, well within the range of soft landing, has a strong impact on the outcome of the spectroscopic experiments. Single adatoms as well as clusters deposited with some excess energy display relatively narrow core level spectra at much lower binding energies than previously reported, even when atomic mass selection is not performed. In contrast, single sized Pt19 clusters, deposited onto a thin Ar film before being exposed to the graphite surface show spectral broadening and shifts to higher binding energies. We discuss our results in terms of the cluster substrate interaction and the influence of deposition conditions on the metal adsorbate structure.  相似文献   

2.
温俊青  夏涛  王俊斐 《物理学报》2014,63(2):23103-023103
采用密度泛函理论方法,在BPW91/LANL2DZ水平下详细研究了Pt n Al(n=1—8)团簇的几何结构、稳定性和电子性质.同时,分析了团簇的结构演化规律、平均结合能、二阶能量差分、能隙、磁性、Mulliken电荷和电极化率.结果表明:除Pt2Al外,所有Pt n Al(n=1—8)团簇的基态几何结构都可以用Al原子替换Pt n+1基态构型中的Pt原子得到,且Al原子位于较高的配位点上.二阶能量差分、能隙的分析结果表明,PtAl和Pt4Al团簇相对其他团簇具有较高的稳定性.Mulliken电荷分析表明,Al原子所带的电荷转移到Pt原子上,Al原子是电荷的捐赠者.磁性的分析说明,单个Al原子的加入对Pt n团簇的平均每原子磁矩随尺寸的变化趋势没有影响,但总体上降低了Pt n团簇的平均磁矩.极化率的研究表明,富Pt团簇的非线形光学效应强,容易被外场极化.  相似文献   

3.
The energetic stability, electronic structure and magnetic properties of Pt8nIrn clusters have been investigated by employing the spin-polarised generalised gradient approximation. The cubic structure is expected to be the effective building block in Ir-rich clusters after optimisation extensively. The average binding energy of all the clusters presents the linear increment trend with iridium atoms, due to the stronger interaction between Ir atoms than Pt atoms. Bader charge analysis shows how tiny charge transfers from iridium to platinum. The atomic moments of Ir are larger than that of Pt, and the Ir-rich clusters show greater moments than the Pt-rich cluster, with the exception of Ir8 and Ir7Pt. A unique magnetic property is found in the Pt4Ir4 cluster, where two Pt atoms show antiferromagnetic alignment and the other atoms are found to be aligned ferromagnetically.  相似文献   

4.
A genetic algorithm has been used to perform a global sampling of the potential energy surface in the search for the lowest-energy structures of unsupported 38-atom Cu–Pt clusters. Structural details of bimetallic Cu–Pt nanoparticles are analyzed as a function of their chemical composition and the parameters of the Gupta potential, which is used to mimic the interatomic interactions. The symmetrical weighting of all parameters used in this work strongly influences the chemical ordering patterns and, consequently, cluster morphologies. The most stable structures are those corresponding to potentials weighted toward Pt characteristics, leading to Cu–Pt mixing for a weighting factor of 0.7. This reproduces density functional theory (DFT) results for Cu–Pt clusters of this size. For several weighting factor values, the Cu30Pt8 cluster exhibits slightly higher relative stability. The copper-rich Cu32Pt6 cluster was reoptimized at the DFT level to validate the reliability of the empirical approach, which predicts a Pt@Cu core-shell segregated cluster. A general increase of interatomic distances is observed in the DFT calculations, which is greater in the Pt core. After cluster relaxation, structural changes are identified through the pair distribution function. For the majority of weighting factors and compositions, the truncated octahedron geometry is energetically preferred at the Gupta potential level of theory.  相似文献   

5.
The structural, energetic, electronic and magnetic properties of small bimetallic ConPtm (n+m≤5) nanoalloy clusters are investigated by density functional theory within the generalized gradient approximation. A plausible candidate for the ground state isomer and the other possible local minima, binding energies, relative stabilities, magnetic moments, the highest occupied and the lowest unoccupied molecular orbital energy gaps have been calculated. It is found as a general trend that average binding energies of Co-Pt bimetallic clusters increase with Pt doping. Planar structures of pure Co clusters become 3D with the addition of Pt atoms. CoPt2, Co2Pt2, Co3Pt2, and CoPt4 nanoalloys are identified as the most stable species since they have higher second finite difference in energy than the others. Pt doping decreases the total spin magnetic moment gradually. A rule for the prediction of the total spin moments of small Co-Pt bimetallic clusters is derived.  相似文献   

6.
The self-diffusion of single Pt adatom on the surface of cuboctahedral and truncated decahedral clusters with 561–10 179 atoms are studied within the context of the many-body potentials obtained via the embedded atom method. The minimum energy diffusion path and the corresponding energy barrier for adatom diffusion on the cuboctahedral and truncated decahedral clusters surfaces are determined through a combination of the quenched molecular dynamics and the nudged elastic band method. The calculated energy barriers are consistent with the available experimental data. The dependence of energy barrier for adatom diffusion across the step edge on the cluster size is found. For the larger cuboctahedral and truncated decahedral clusters, the simulations show that the movement of the adatom is confined to a central region, and the adatom may escape from the center region only at elevated temperatures. In addition, we also find that the truncated decahedral structure is more favorable over the cuboctahedral structure for smaller clusters. The cluster growth experiments support our results.  相似文献   

7.
The interactions between Ptn clusters (n?13) and a graphene sheet have been investigated by first-principles calculations based on density functional theory. For single Pt-atom and Pt2-dimer adsorptions, the stable adsorption sites are bridge sites between neighboring carbon atoms. When the number of Pt atoms in a cluster increases, the Pt-C interaction energy per contacting Pt atom becomes smaller. For smaller clusters (3?n?7), the adsorption as a vertical planar cluster is more stable than that as parallel planar or three-dimensional (3D) clusters, due to the stability of a planar configuration itself and the stronger planar-edge/graphene interaction, while the adsorption as a parallel planer cluster becomes stable for larger cluster (n?7) via the deformation of the planar configuration so as to attain the planar-edge/graphene contact. For much larger clusters (n?10), the adsorption as a 3D cluster becomes the most stable due to the stability of the 3D configuration itself as well as substantial Pt-C interactions of edge or corner Pt atoms. The interfacial interaction between a Pt cluster and graphene seriously depends on the shape and size of a cluster and the manner of contact on a graphene sheet.  相似文献   

8.
ABSTRACT

Structures of small lengths of capped (3,3), (4,4) and (5,5) single-walled carbon nanotubes (SWCNTs) and their structures decorated by Pt atom and Ptn clusters (n = 2–4) were obtained using density functional theory calculations. Binding abilities of Pt atom and Ptn clusters on the outer surface of SWCNTs at various adsorption sites were explored. Adsorptions of H2 onto Pt atom of the Pt-decorated (3,3), (4,4) and (5,5) SWCNTs were studied and their adsorption energies are reported. The thermodynamic properties and equilibrium constants for H2 adsorptions on the Pt4-decorated (3,3), (4,4) and (5,5) SWCNTs were obtained. The adsorption of H2 on the Pt atom of the Pt4/(3,3) SWCNT was found to be the most preferred reaction of which enthalpy and free energy changes at room temperature are ?46.61 and ?23.99 kcal/mol, respectively.  相似文献   

9.
XPS data for the valence band, the Pt 4? states, and the Ti 2p states are presented for the intermetallic Pt3Ti. Relative to the Pt valence band, the Pt3Ti band shows a decrease in the density of states just below the Fermi level and a shift of the centroid to higher (binding) energy. Ti 2p and Pt 4? binding energies showed relatively large shifts with respect to the pure metals. These changes in the valence band density of states and core level binding energies are interpreted as arising from hybridization of the d-orbitals in both metals to form strong intermetallic bonds.  相似文献   

10.
Changes in optical reflectance from a Mo (100) surface due to chemisorption of O2 and CO in amounts up to a monolayer show that adsorbate-dependent surface states are present near the Fermi energy and are sensitive to the adatom binding configuration.  相似文献   

11.
4f core-level shifts have been measured for clean surfaces of Pt(111), Pt(331), and Pt(557). Surface peaks due to terrace sites are shifted toward lower binding energy (0.32 ± 0.05 eV) from the bulk peak, whereas peaks from step atoms are shifted by 0.58 ± 0.05 eV also to lower binding energy. The intensity ratios for the two sites differ considerably between the stepped Pt surfaces. Chemisorption of carbon monoxide on the Pt(331) surface is preferential to step sites, with a Pt 4f binding energy shift of ~ 1.29 eV toward higher binding energy. Chemisorption of potassium and ammonia also produces Pt 4f surface shifts which are at higher binding energy than the bulk peak. These experiments do not support the concept of electron donation by these adsorbates into metal d orbitals. The results are discussed in view of, and supported by, tight-binding LCAOMO calculations of potassium and ammonia interacting with a Pt(111) thin film.  相似文献   

12.
Diffusions of small cluster Pt6 on Pt(1 1 1) surface and Cu6 on Cu(1 1 1) are studied by molecular dynamics simulation, respectively. The atomic interaction is modeled by the semiempirical potential. The results show that the diffusion processes in the two systems are far different. For example, on Pt(1 1 1) surface, the hopping of single atom and the shearing of two atoms of hexamer only occur on the adatom(s) adsorbed at B-step, while on Cu(1 1 1) surface they can appear on the adatom(s) either at A-step or B-step. To the concerted translation of the parallelogram hexamer, the anisotropy in the diffusion path is observed in the two systems, the mechanisms and then the preferential paths, however, are completely different. The reasons for these diffusion characteristics and differences are discussed.  相似文献   

13.
We have used density functional theory method to calculate the Pt surface segregation energy in the Pt3Ni (111) surface doped with a third transition metal M and thus investigated the influence of component M on the extent of Pt segregation to the outermost layer of these Pt3Ni/M (111) surface. As a third component in the Pt3Ni/M (111) surface, V, Fe, Co, Mo, Tc, Ru, W, Re, Os, and Ir were predicted to lead to even more negative Pt surface segregation energies than that in the based Pt3Ni (111) surface; Ti, Cr, Mn, Cu, Zr, Nb, Rh, Hf, and Ta would still retain the preference of Pt segregation to the surface but with less extent than the replaced Ni, while Pd, Ag, and Au would completely suppress the Pt segregation to the Pt3Ni/M (111) surfaces. Furthermore, we examined the relation between the Pt surface segregation energy in the Pt3Ni/M (111) surfaces and the material properties (lattice parameter, heat of solution, and Pt surface segregation energy) of binary alloys Pt3M. It was found that the surface energy effect, strain effect, and heat of solution effect induced by the doped element M would collectively affect the Pt surface segregation energy in the Pt3Ni/M (111) surfaces.  相似文献   

14.
Adsorption energies and stable configurations of CO on the Pt clusters are investigated using the first-principles density-functional theory method. It is found that the adsorption of CO on the top site of the Pt4 cluster is more stable than that on the bridge site. The atomic charges are unevenly distributed within the charged Pt4 cluster, and the structural positions of the Pt atoms determine their charge states and therefore their activity. A systematic study on the effects of electrons and holes doping in the Pt4 clusters suggest an effective method to prevent the CO poisoning through regulating the total charge in Pt4 clusters. The graphene-based substrate is an ideal catalyst support, which makes the Pt catalyst lose electron and weakens the CO adsorption. The results would be of great importance for designing high active nanoscale Pt catalysts used for fuel cells.  相似文献   

15.
400 clusters on a stepped graphite surface by a combination of scanning electron microscopy experiments and computer simulations (molecular dynamics and Monte Carlo methods). We find that the shape of the clusters is only partially deformed by the impact with the surface, moreover the clusters do not create surface defects upon landing, and so are able to diffuse freely over the surface. Many clusters are found to become trapped at surface steps, where their mobility is reduced by the higher binding energy. Exploring the 1-D diffusion of clusters along the steps reveals the low mobility for larger islands, as well as the importance of defects on the step (for example kinks), which trap the mobile clusters. Received: 9 April 1998/Accepted: 25 August 1998  相似文献   

16.
The role of a lattice step in affecting the binding of adatoms in its vicinity has been explored for tungsten as well as rhenium adatoms on the (211) plane of tungsten. On this plane adatoms are confined to sites in a one-dimensional channel along [1̄11]. From the equilibrium distribution of an adatom over all sites in a channel it is possible to derive the relative free energy of binding at the different sites. Such measurements have been made using a field ion microscope supported by an automated data handling system. Contrary to expectations based on potential calculations using standard pair interactions, atom binding is found to be stronger close to the plane edges rather than in the center, where the number of distant neighbors around the adatom is larger. These edge effects have a surprisingly long range, extending at least over three sites, and are strongly dependent upon the chemical identity of the adatom.  相似文献   

17.
Mine A. Gülmen 《Surface science》2006,600(21):4909-4921
The adsorption properties of CO on Pt3Sn were investigated by utilizing quantum mechanical calculations. The (1 1 1), (1 1 0) and (0 0 1) surfaces of Pt3Sn were generated with all possible bulk terminations, and on these terminations all types of active sites were determined. The adsorption energies and the geometries of the CO molecule at those sites were found. Those results were compared with the results obtained from the adsorption of CO on similar sites of Pt(1 1 1), Pt(1 1 0) and Pt(0 0 1) surfaces. The comparison reveals that adsorption of CO is stronger on Pt surfaces; this may be the reason why catalysts with Pt3Sn phase do not suffer from CO posioning in experimental works. Aiming to understand the interactions between CO and the metal adsorption sites in detail, the local density of states (LDOS) profiles were produced for atop-Pt adsorption, both for the carbon end of CO for its adsorbed and free states, and for the Pt atom of the binding site. LDOS profiles of C of free and adsorbed CO and Pt for corresponding pure Pt surfaces, Pt(1 1 1), Pt(1 1 0) and Pt(0 0 1) were also obtained. The comparison of the LDOS profiles of Pt atoms of atop adsorption sites on the same faces of bare Pt3Sn and Pt surfaces showed the effect of alloying with Sn on the electronic properties of Pt atoms. Comparison of LDOS profiles of the C end of CO in its free and atop adsorbed states on Pt3Sn and LDOS of Pt on bare and CO adsorbed Pt3Sn surface were used to clear out the electronic changes occurred on CO and Pt upon adsorption. The study showed that (i) inclusion of a Sn atom at the adsorption site structure causes dramatic decrease in stability which limits the number of possible CO adsorption sites on Pt3Sn surface, (ii) the presence of Sn causes angles different from 180° for M-C-O orientation, (iii) the presence of Sn in the neighborhood of Pt on which CO is adsorbed causes superposition of the 5σ/1π derived-state peaks at the carbon end of CO and changes in adsorption energy of CO, (iv) Sn present beneath the adsorption site strengthens the CO adsorption, whereas neighboring Sn on the surface weakens it for all Pt3Sn surfaces tested and (v) the most stable site for CO adsorption is the atop-Pt site of the mixed atom termination of Pt3Sn(1 1 0).  相似文献   

18.
The growth and magnetism of nanometer size Fe clusters on stepped Pt surfaces is investigated by scanning tunneling microscopy (STM) and magneto-optical Kerr effect measurements (MOKE). The clusters are formed on xenon buffer layers of varying thickness and then brought into contact with the substrate by thermal desorption of the Xe. The cluster size is controlled by the thickness of the Xe layer. It is found that clusters of diameter smaller than the Pt terrace width of 2 nm are aligned along the step edges of the Pt(997), thus forming linear cluster chains. In this arrangement, the clusters are ferromagnetic with an easy axis in the direction along the surface normal. If the cluster diameter is larger than the terrace width then the alignment along the step edges is not observed and rather large agglomerates are found which are randomly distributed over the surface. Despite their increased volume, such agglomerates are superparamagnetic with in-plane easy magnetization axis. The enhanced magnetic anisotropy energy in the smallest clusters is originating from hybridization effects at the Fe-Pt interface.  相似文献   

19.
Sergio R. Calvo 《Surface science》2007,601(21):4786-4792
The reactivity of Pt-Pd alloy surfaces towards the oxygen reduction reaction is studied as a function of the alloy overall composition and surface atomic distribution and compared to that on pure Pt surfaces. The systems include Pd and Pt monolayers on various substrates and Pt3Pd, PtPd and PtPd3 surfaces of ordered alloys. Reactivity is evaluated on the basis of the adsorption strength of oxygenated compounds which are intermediate species of the four-electron oxygen reduction reaction, separating the effect of the first electron-proton transfer from that of the three last electron-proton transfer steps. None of the alloys are found to provide better sites than those of pure Pt both for O2 dissociation and for the reduction of O and OH to water; with the skin surfaces being the closest to pure Pt. The results are discussed in relation to those found in 10-atom clusters of similar compositions and to experiments.  相似文献   

20.
The energy and perpendicular force of a Pt adatom on Pt (0 0 1) surface have been calculated by MAEAM. With increasing the distance of the adatom from the surface, the energy and force maps can be classified into four regions: repulsive region, transformed region, strongly attractive region and weakly attractive region. In repulsive region, the maximum (minimum) values of the energy and repulsive force appear on the top (hole) of the first layer atoms of Pt (0 0 1) surface due to stronger pair-potential interaction. In other regions, the energy and force maps are more complicated than those in repulsive region due to the effects of the many body interactions and nonspherical distribution of the electrons of the atoms in crystal. The most stable position is 0.1664 nm above the hole of the first layer atoms for a Pt adatom on Pt (0 0 1) surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号