首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
基于衍射元件的特殊成像性质,使用双层衍射元件进行双波段红外光学系统设计已成为研究热点。使用双层衍射元件能够有效提升宽波段的衍射效率,在简化系统结构的基础上提高像质。将红外成像系统设计为制冷型结构,能够消除背景噪声干扰,保证100%的冷光阑效率。基于带宽积分平均衍射效率最大化方法,设计了一款含有双层衍射元件的制冷型双波段红外光学成像系统,实现了在双波段红外和宽温度范围下的无热化设计。光学系统含有三片透镜,仅由两种材料组成,入瞳直径为80 mm,焦距为100 mm,F数为1.25,有效视场为6°,工作波段为3.7~4.8μm和8.0~12.0μm,工作环境温度为-40~60℃。分析结果表明,在整个温度范围内,在17 lp/mm截止频率处,双波段红外光学系统所有视场的调制传递函数分别高于0.78和0.59,同时双层衍射元件在红外双波段的带宽积分平均衍射效率分别为99.35%和98.73%,综合带宽积分平均衍射效率为99.04%。此光学系统的结构设计简单,成像质量好,在军事和商业应用中具有一定优势。  相似文献   

2.
建立了环境温度对双层衍射元件衍射效率影响的数学模型,给出高衍射效率衍射元件的优化设计方法。通过选择宽温度范围内设计波长对,计算衍射元件微结构参数,确保双层衍射元件在基底材料确定的情况下仍具有高衍射效率,发现混合成像光学系统具有最佳像质。最后设计了一套含有此双层衍射元件的中波红外混合成像光学系统。结果表明,与传统设计相比,本文方法能够有效地改善混合成像光学系统的无热化设计像质,设计结果更好。  相似文献   

3.
中波红外成像无热化光学系统设计   总被引:1,自引:1,他引:0       下载免费PDF全文
介绍了温度变化对红外光学系统的影响和红外光学系统无热化设计的常用方法。应用CODE-V光学设计软件设计了一个工作于中红外光谱波段的折射式全球面镜无热化光学系统,采用锗、硅和硒化锌3种光学材料,系统镜间材料为铝合金。设计结果表明:在-40℃~+65℃温度范围内,光学系统的成像质量接近衍射极限,且光学系统的出瞳与光栏重合,具有结构简单、体积小、质量轻、成本低等优点,可应用于空间红外光学系统。  相似文献   

4.
介绍了光学系统无热化设计的常用方法及设计原理。为满足军用光学系统的工作要求,采用较优的光学被动式补偿无热化设计方法,设计了一个红外光学系统。该系统在-40~60℃温度范围内成像质量接近衍射极限,且结构简单、重量轻、易于加工,可应用于红外导引头光学系统。  相似文献   

5.
新型长波红外折衍混合消热差系统   总被引:6,自引:4,他引:2  
为了提高大靶面高分辨率光学系统的性能,基于衍射元件独特的温度特性以及热补偿理论,设计了工作波段为8~12μm、视场角为16°、F/#为1.9、后工作距为133 mm的新型折衍混合消热差系统.系统采用三片式结构,使用锗和硒化锌两种常用的红外材料,仅引入一个二次非球面和一个衍射面,使系统具有结构简单、体积小、重量轻、成本低等优点.实验结果表明:系统在较大视场内成像质量接近衍射极限,且在-30℃~70℃温度范围内性能稳定,适用于像元尺寸为35μm,像元数为640×480的现代非制冷型焦平面阵列探测器,从而实现了消热差设计.  相似文献   

6.
采用多层衍射元件是实现宽波段高衍射效率的有效方法,设计了一个含双层衍射元件-30℃~70℃消热差系统。通过合理选择衍射面的基底材料,优化衍射表面的浮雕深度,设计出红外宽波段高衍射效率的消热差光学系统。设计结果表明,在整个设计温度范围内,该光学系统成像质量良好,光学传递函数在16lp/mm时均在0.6以上。  相似文献   

7.
折/衍混合红外光学系统的消热差设计   总被引:6,自引:4,他引:2  
研究了衍射光学元件的温度特性以及混合红外光学系统的消热差设计方法.设计了工作在3.7~4.8μm,视场4.5°,具有100%冷光阑效率的折射/衍射混合红外光学系统.该系统在-30~70℃温度范围内成像质量接近衍射极限,可用于像元尺寸为30 μm的制冷型凝视焦平面阵列探测器上.  相似文献   

8.
红外3.7~4.8 μm波段折射/衍射光学系统的消热差设计   总被引:2,自引:0,他引:2  
研究了衍射光学元件在红外折射/衍射混合光学系统中的消热差特性并给出了具体设计实例,该系统工作波段为3.7~4.8 μm,全视场角为7.12°,满足100%冷光阑效率.系统仅采用硅和锗两种材料,设计结果表明,该系统在-50~100℃温度范围内不仅成像质量接近衍射极限,而且结构简单、体积小、质量轻,适用于像元尺寸为30 μm、像元数320×240的凝视焦平面阵列探测器.  相似文献   

9.
红外双波段双层谐衍射光学系统设计   总被引:9,自引:0,他引:9  
范长江  王肇圻  吴环宝  张梅 《光学学报》2007,27(7):266-1270
将谐衍射透镜应用在传统红外单波段佩茨瓦尔(Petzval)物镜上,设计得到工作波段处于3.4~4.2μm和8~11μm的红外双波段单层谐衍射光学系统。但单层谐衍射元件的衍射效率只在设计波长处衍射效率最高,随着波长相对设计中心波长向两侧偏离,主衍射级次的衍射效率逐渐下降。为提高含单层谐衍射元件光学系统的衍射效率,基于双层衍射元件衍射效率表达式研究了双层谐衍射元件的结构优化,给出了优化方法。设计出佩茨瓦尔型红外双波段双层谐衍射光学系统,其在3.4~4.2μm和8~11μm两个工作波段的衍射效率均达到90%以上,相比含有单层谐衍射面的光学系统衍射效率有了很大提升,提高了像面衬比度,完善了系统成像质量。  相似文献   

10.
高速切换紧凑型双视场无热化红外光学系统设计   总被引:1,自引:0,他引:1  
曲贺盟  张新 《中国光学》2014,7(4):622-630
采用透射二次成像光学系统结构形式,实现了远射比为1,F数为1.67,变倍比为4.6的红外双视场光学系统设计。采用光学元件切换变倍方式,配合电磁阀切换机构实现了60 ms的变倍速率;采用光学被动补偿方式,通过适当的光学和结构材料匹配,实现了-40~+50℃无热化设计。设计结果表明:光学系统在不同温度下各视场调制传递函数在特征频率为20 lp/mm时接近衍射极限,空间排布紧凑,视场切换速度快,该双视场红外光学系统满足应用需求。  相似文献   

11.
折反式大口径三组元红外变焦距系统设计   总被引:3,自引:0,他引:3  
分别论述了设计红外变焦距光学系统的曲线拟合法和解析法,并设计了大口径、三组元、机械补偿红外变焦距系统,系统的口径为500nm,系统焦距为750nm-3000mm。从计算结果看,设计的变焦距光学系统像面稳定,成像质量良好,接近或达到了衍射极限。  相似文献   

12.
针对切换式红外光学系统的长焦部分单独成像,切入一组透镜后实现短焦部分成像的特点,提出了一种对切换变焦系统的长短焦部分分别进行热补偿的方法。在-30~+70℃范围内,移动长短焦共用透镜组实现对长焦的热补偿,对此时短焦系统剩余的热差,移动短焦切换组元来实现其热补偿。设计了一个焦距180/60mm,8~12um,F数为2的切换变焦系统。分析了系统在不同温度时的像质,两个补偿透镜组的位移量及其数值关系。用Diffsys软件对系统中使用的衍射元件的特性进行了分析。此系统的长短焦不需要考虑各种材料搭配,转好地实现了热补偿。  相似文献   

13.
设计了一种基于衍射元件的两档轴向移动式红外变焦光学系统.系统工作波段为3.7~4.8μm,焦距为80/240mm,F#为4,探测器采用640×512的中波制冷红外探测器,探测器的像元尺寸为15μm×15 μm,该系统具有100%冷光阑效率.在光学设计中采用了衍射元件,大大提高了光学系统的像质,有效减小了系统的体积和重量.对光学系统进行了合理的公差分配和冷反射分析.仿真结果表明,该系统结构紧凑、变倍时间较短、成像质量优异.  相似文献   

14.
可见光折/衍射混合光学系统消热差设计   总被引:2,自引:0,他引:2  
王茜  许士文 《光学学报》2004,24(12):595-1598
由于一些可见光折衍射混合光学系统结构复杂,光学材料种类繁多且光热性能差异大,不能像红外系统那样通过解消色差、消热差方程组得到初始结构。通过分析衍射光学元件的温度特性,采取使用衍射光学元件先消色差再消热差的方法,完成了可见光波段遥感物镜的消热差设计。系统在20℃~100℃范围内成像质量均保持良好,调制传递函数下降范围在6%之内。设计结果表明利用衍射光学元件的混合光学设计使系统结构简单化,并在要求的温度范围内性能稳定。  相似文献   

15.
讨论了多层衍射光学元件的光学成像性质.给出了优化设计多层衍射光学元件最大光栅厚度的方法,分析了构成多层结构的每块单层衍射元件的衍射效率对整体衍射效率的贡献作用.在0.436~0.656 μm的可见光波段,多层衍射光学元件最低衍射效率可达到98%以上,克服了单层衍射元件偏离设计波长后衍射效率显著下降的缺点,改善了宽波段衍射效率.将多层衍射光学元件应用在折、衍射混合光学系统中能够明显提高系统的成像质量,同时使得光学系统体积减小,重量减轻,并且在某些系统中可以避免使用昂贵的特殊材料,从而可以降低光学系统的成本价格.  相似文献   

16.
红外折射/衍射超常温光学系统   总被引:19,自引:13,他引:6  
设计了折射/衍射混合减热差红外光学系统,仅使用硅和锗两种材料.设计结果表明,此系统具有良好的减热差和校色差作用,在-80~200℃温度范围内不仅得到接近衍射极限的成像质量,而且结构简单,体积小,重量轻.  相似文献   

17.
高分辨率红外导引头光学系统小型化设计   总被引:1,自引:0,他引:1       下载免费PDF全文
设计一种高分辨率中波红外成像制导光学系统。采用折射一次成像的结构形式,初始结构为远摄型物镜组。所设计的系统共用3个光学元件,通过引入非球面和二元光学衍射元件,增加光学设计的自由度,全视场达到10,系统总长为49 mm,焦距为70 mm。并且系统在-40℃~60℃温度范围内具有良好的消热差作用,成像质量接近衍射极限,最大弥散斑直径小于15 m。适用于像元数为640512,像元尺寸为15 m,F数为2的红外焦平面探测器。系统具有成像分辨率高、视场大且体积小等优点,可用于小型红外导引头中。  相似文献   

18.
折射/衍射红外光学系统的消热差设计   总被引:24,自引:2,他引:22  
郭永洪  沈忙作  陆祖康 《光学学报》2000,20(10):392-1395
研究了衍射光学元件的温度效应以及混合光学系统的消热差设计方法 ,给出了视场4 .2°、冷光栏效率 10 0 %、温度范围在 - 30~ 70℃的红外折射 /衍射混合消热差系统的设计结果  相似文献   

19.
低温光学系统的研制   总被引:9,自引:0,他引:9  
低温光学系统对于在空间探测微弱红外目标有重要的意义。无热效应的光学系统设计保证光学系统的像质不受温度变化的影响。有限元分析方法的结构优化设计,在确保光学性能的前提下使系统的重量达到最轻。特殊的制造工艺充分消除零件内部应力。低温检测的结果表明,光学系统的温度从室温降到100K的低温,在温度变化185K的条件下,系统波面误差几乎没有变化,光学系统都能达到衍射极限的成像质量。  相似文献   

20.
讨论了多层衍射光学元件的光学成像性质.给出了优化设计多层衍射光学元件最大光栅厚度的方法,分析了构成多层结构的每块单层衍射元件的衍射效率对整体衍射效率的贡献作用.在0.436~0.656 μm的可见光波段,多层衍射光学元件最低衍射效率可达到98%以上,克服了单层衍射元件偏离设计波长后衍射效率显著下降的缺点,改善了宽波段衍射效率.将多层衍射光学元件应用在折、衍射混合光学系统中能够明显提高系统的成像质量,同时使得光学系统体积减小,重量减轻,并且在某些系统中可以避免使用昂贵的特殊材料,从而可以降低光学系统的成本价格.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号