首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
合成了一个三维超分子化合物(C20O2H14)(C12N2H8)(命名为BP1),通过元素分析、红外光谱、核磁共振氢谱和X射线单晶衍射对其结构进行了表征,结果表明分子之间通过氢键和π-π堆积弱的相互作用形成超分子化合物。对所有合成的超分子化合物进行了紫外光谱和荧光光谱的测试。在室温DMSO溶液中,当激发波长为342 nm时,化合物在373 nm处有一强发射峰,呈现紫色荧光,这可以归属于分子内的π*→π跃迁。X射线单晶衍射分析结果表明,该超分子化合物属于三斜晶系,P1空间群,晶胞参数a=1.087 8(2)nm,b=1.125 2(2)nm,c=1.168 0(2)nm,α=97.89(3)°,β=110.91(3)°,γ=109.62(3)°,V=1.203 2(4)nm3,Z=2,R1=0.053 1,wR2=0.163 4,GOF值为1.034。  相似文献   

2.
以2,4′-联苯二甲酸(H2bpdc)和1,10-邻菲罗啉(phen)为配体,采用水热法合成一例三维超分子网状镉(Ⅱ)配合物[Cd(bpdc)(phen)2(H2O)]·6H2O(1)。通过单晶X射线衍射分析,元素分析和红外光谱分析表征化合物1的结构。单晶X射线衍射分析结果表明,化合物1属于三斜晶系,P1空间群,中心金属Cd(Ⅱ)离子呈现六配位扭曲八面体构型,通过两种氢键作用和π—π堆积作用形成三维超分子结构。同时,对化合物1进行固态/溶液以及不同温度下的荧光性能测试。以350nm为激发波长进行激发,298K固态时,化合物1在390nm处有强发射峰,呈现紫色荧光;77K固态时,化合物1的荧光光谱具有两个发射谱带,分别位于380和520nm处,是因为在低温时化合物1表现出精细结构。298K时,化合物1在DMSO溶液和CH3OH溶液中分别在380和375nm有最大发射,相对于固态最大发射波长发生蓝移,呈现紫色荧光。这均是基于中心金属微扰配体中心的π*→π跃迁发射。研究了化合物1固态和溶液的荧光寿命,化合物1荧光衰减过程包含双组分。298K条件下,化合物1在DMSO溶液中的寿命(τ1=1.73μs和τ2=14.07μs)比CH3OH溶液中的荧光寿命(τ1=1.21μs和τ2=12.44μs)长。此外,77K固态时的荧光寿命(τ1=1.96μs和τ2=16.11μs)长于298K的固态荧光寿命(τ1=1.20μs和τ2=11.34μs),这是因为低温条件下降低分子内部的非辐射跃迁,从而延长固态荧光寿命。  相似文献   

3.
以2,4′-联苯二甲酸(H2bpdc)和1,10-邻菲罗啉(phen)为配体, 采用水热法合成一例三维超分子网状镉(Ⅱ)配合物[Cd(bpdc)(phen)2(H2O)]·6H2O (1)。通过单晶X射线衍射分析, 元素分析和红外光谱分析表征化合物1的结构。单晶X射线衍射分析结果表明, 化合物1属于三斜晶系, P1空间群, 中心金属Cd(Ⅱ)离子呈现六配位扭曲八面体构型, 通过两种氢键作用和π—π堆积作用形成三维超分子结构。同时, 对化合物1进行固态/溶液以及不同温度下的荧光性能测试。以350 nm为激发波长进行激发, 298 K固态时, 化合物1在390 nm处有强发射峰, 呈现紫色荧光;77 K固态时, 化合物1的荧光光谱具有两个发射谱带, 分别位于380和520 nm处, 是因为在低温时化合物1表现出精细结构。298 K时, 化合物1在DMSO溶液和CH3OH溶液中分别在380和375 nm有最大发射, 相对于固态最大发射波长发生蓝移, 呈现紫色荧光。这均是基于中心金属微扰配体中心的π*→π跃迁发射。研究了化合物1固态和溶液的荧光寿命, 化合物1荧光衰减过程包含双组分。298 K条件下, 化合物1在DMSO溶液中的寿命(τ1=1.73 μs和τ2=14.07 μs)比CH3OH溶液中的荧光寿命(τ1=1.21 μs和τ2=12.44 μs)长。此外, 77 K固态时的荧光寿命(τ1=1.96 μs和τ2=16.11 μs)长于298 K的固态荧光寿命(τ1=1.20 μs和τ2=11.34 μs), 这是因为低温条件下降低分子内部的非辐射跃迁, 从而延长固态荧光寿命。  相似文献   

4.
以2,6-吡啶二甲酸为配体,在水热条件下合成出一个具有(4.82)拓扑结构的二维稀土镝配位聚合物[Dy(PDA)(HPDA)]n(1)(H2PDA=2,6-吡啶二甲酸).通过元素分析,1H NMR,IR和X射线单晶衍射对其进行结构表征.X射线单晶衍射分析结果表明,该化合物届单斜晶系,P2(1)/c空间群.该化合物由配体的氧原子连接,形成具有(4.82)型拓扑的二维层状结构,相邻层间的π-π堆积弱相互作用使之形成三维超分子.测定了配体和1在固态室温条件的紫外吸收和荧光光谱.在室温下,配体和配合物均在280 nm处有一宽谱带强吸收,这可以归属于以配体为中心的π→π*跃迁.当激发波长为280 nm时,1呈现出基于配体为中心的荧光发射峰和稀土Dy3+的特征荧光发射峰.研究了配位聚合物1的固态荧光寿命,荧光衰减过程包含双组分,相应的荧光寿命τ1和τ2分别是3.61和12.81μs.  相似文献   

5.
合成了一个三维超分子化合物(C20O2H14)(C12N2H8)(命名为BP1),通过元素分析、红外光谱、核磁共振氢谱和X射线单晶衍射对其结构进行了表征,结果表明分子之间通过氢键和π-π堆积弱的相互作用形成超分子化合物。对所有合成的超分子化合物进行了紫外光谱和荧光光谱的测试。在室温DMSO溶液中,当激发波长为342nm时,化合物在373nm处有一强发射峰,呈现紫色荧光,这可以归属于分子内的π*→π跃迁。X射线单晶衍射分析结果表明,该超分子化合物属于三斜晶系,P1空间群,晶胞参数a=1.0878(2)nm,b=1.1252(2)nm,c=1.1680(2)nm,α=97.89(3)°,β=110.91(3)°,γ=109.62(3)°,V=1.2032(4)nm3,Z=2,R1=0.0531,wR2=0.1634,GOF值为1.034。  相似文献   

6.
合成了一种新型的芴类衍生物2,7-二(3-(氰基)苯基)-9,9-二乙基芴。通过元素分析、红外(IR)、核磁共振(1H NMR)以及X射线单晶衍射对其组成和结构进行了表征。结果表明该化合物属于正交晶系,P空间群,晶胞参数:a=1.380 0(3)nm,b=2.230 6(4)nm,c=0.726 33(15)nm,α=β=γ=90°,V=2.235 8(8)nm3,Z=4,F(000)=896,μ=0.073 mm-1,S=1.013,R=0.046 9,wR=0.104 2。同时,我们对该化合物的紫外-可见吸收光谱和荧光光谱做了研究。在室温下,当激发光波长为330 nm时,该化合物的固态薄膜发射强烈的蓝色荧光,其发射波长为408 nm。此芴类衍生物在CH2Cl2溶液中的荧光量子效率为0.64,在固态薄膜中的斯托克斯位移为56 nm。该化合物有望成为一种优良的蓝色发光材料。  相似文献   

7.
采用溶剂热法合成出单核Zn(Ⅱ)配合物[Zn(2,6-PDA)(phen)H2O]·H2O (1)和双核Cu(Ⅰ)配合物{[Cu(μ-Ⅰ)(phen)H2O]·H2O}2 (2) (2,6-H2PDA=2,6吡啶二甲酸,phen=1,10-邻菲罗啉),通过单晶结构测试、元素分析和红外吸收光谱对结构进行表征,并研究了两种配合物在二甲基亚砜(DMSO)中及固态时的荧光光谱及DMSO溶液中紫外可见吸收光谱。配合物1和2的最大吸收峰分别出现在253和242 nm附近,相比于配体吸收峰均发生红移,在1和2中,主要呈现出中心金属离子微扰的phen的π→π*的跃迁,且吸收强度强于phen,说明中心金属离子与phen配位后,增加了有机配体在紫外区的吸收,利于配体对能量的吸收。1在DMSO溶液中的荧光发射峰位于361,379和392 nm,在固态时的荧光发射峰为407,434和467 nm,2在DMSO溶液中的荧光发射峰出现在422,443和461 nm,固态时荧光发射峰在442,469,501 nm,均呈现蓝光发射。配合物1和2的固态荧光发射光谱与相应的DMSO溶液中的发射峰相比分别红移55和23 nm,这是由于在固态时配合物1和2的分子中的π—π堆积相互作用和分子间的相互作用,特别是配合物2中存在强烈的Cu(Ⅰ)…Cu(Ⅰ)相互作用,降低了体系前线轨道之间的能量差。  相似文献   

8.
以苯并咪唑-5,6-二羧酸(H3BIDC)为配体,通过水热条件下的自组装技术制备出一个三维网状结构的锌配位聚合物[Zn(HBIDC).H2O]n(1)。用X射线单晶衍射、元素分析和IR表征了1的结构,用紫外-可见吸收光谱、荧光光谱和荧光衰减曲线研究了1在DMSO溶液中和固态时的光学性能。1在室温DMSO溶液中,最大发射峰是在481nm,呈现蓝色荧光;而在固体状态下,在493nm处有一强蓝光发射峰,这均是基于苯并咪唑-5,6-二羧酸中心的单重激发态到单重基态(π*→π)的跃迁发射。实验表明1具有较高的荧光量子产率并可作为潜在的蓝色发光材料。  相似文献   

9.
通过水热法合成了一种三维超分子配合物Zn(C12H8N3)2.H2O,经元素分析、紫外和红外光谱对其进行表征。用X射线单晶衍射测定了其晶体结构,该配合物晶体属单斜晶系,P21/c空间群,晶胞参数为:a=1.25239(10)nm,b=1.30233(11)nm,c=1.33167(11)nm,β=102.6950(10)°,Z=4,[Zn(C12H8N3)2.H2O],Mr=471.81,V=2.1189(3)nm^3,Dc=1.479g·cm^-3,μ=1.189mm^-1,F(000)=968,R1=0.0300,WR2=0.1017,GOF=1.005。该化合物由1个Zn(Ⅱ)离子、2个2-(2-吡啶基)苯并咪唑阴离子和1分子配位水组成。其中2-(2-吡啶基)苯并咪唑的1位氮原子、吡啶环上氮原子及水分子中氧原子与锌(Ⅱ)离子配位,形成五配位的畸变三角双锥结构,单胞分子之间通过氢键O(w)-H…N和π-π堆积作用相互构成三维网状超分子体系。固态荧光测试显示,该配合物具有强的蓝色荧光发射(λmax=456nm)。  相似文献   

10.
采用溶剂挥发法合成了钴配合物[Co(phen)(pydc)(H2O)]· 2H2O,通过元素分析、红外光谱、紫外光谱、热重和X-射线单晶衍射对其结构进行了表征.该化合物属于三斜晶系,Pi空间群.六配位的Co(Ⅱ)为畸变的八面体构型.单胞分子间通过氢键及π-π堆积作用相互形成三维网状结构.荧光测试表明配合物在369nm(λmax)具有强的荧光发射.  相似文献   

11.
采用溶剂热法合成出一例具有双核结构的铜(Ⅰ)配合物[Cu2(μ-Ⅰ)2(phen)2].CH3CN(1)(phen=1,10-邻菲咯啉)。采用元素分析、IR和单晶X-射线衍射表征其结构,同时分别测试了配合物1在DMSO溶液中和固态时的荧光光谱及荧光寿命。在室温条件下,配合物1的DMSO溶液在369和380nm有最大发射峰,在460nm处有一个肩峰,呈现蓝紫色荧光;在室温固体状态下,配合物1在650~678nm处有一宽谱带的强发射峰,呈现强的红色荧光,这均是基于配体中心激发单重态到基态单重态(π*→π)的跃迁发射。配合物1荧光衰减过程包含双组分,在DMSO溶液中的荧光寿命τ1和τ2分别为1.36和5.98μs,对应的衰减因子分别为50.21%和49.79%;固态时的荧光寿命τ1和τ2分别是1.42和8.85μs,对应的衰减因子分别为51.15%和48.85%。  相似文献   

12.
本文研究CeMSAl11O19-SrAl12O19和CeMeAl11O19-SrMgAl10O17体系固溶体的发光性质。发现在CeMgAl11O19-SrAl12O19体系中,能形成完全的固溶体,随着SrAl12O19含量的增加,晶胞常数a线性地减小,c保持不变,Ce3+的Nephelauxetic效应和晶场强度减弱,Ce3+最低5d激发带边能量呈指数形式变化,Ce3+的发射能量线性地高移。在CeMgAl11O19-SrMgAl10O17体系中,不能形成完全的固溶体。固溶体终端组成大约为0.3CeMgAl11O19-0.1SrMgAl10O17。在这种固溶体中,晶胞常数α和c则随SrMgAl10O17含量分别线性地减小和增大。样品制备中添加H3BO3,引起固溶体晶僻特性改变,大大提高Ce3+的发光强度。但当H3BO3量超过0.4(摩尔比)时,硼将进入晶格,反而减弱Ce3+的发光。  相似文献   

13.
采用高温固相反应利用原料CaCO3,MgO,SiO2和Eu2O3合成CaMgSi2O6:Eu3 样品,并研究了其结构特性、光谱特性.CaMgSi2O6:Eu3 属于单科晶系,基质掺入Eu离子后结构没有明显变化.CaMgSi2O6:Eu3 在147 nm真空紫外光激发下呈红色发射,发射主峰位于611 nm,是Eu3 的5D0→7F2跃迁的典型发射.当Eu3 的相对摩尔浓度在0.02到0.10 mol之间变化时,由相关数据可以发现有浓度猝灭现象发生.CaMgsi2O6:Eu2 在172 nm真空紫外光激发下呈蓝色发射,发射主峰位于452 nm,是Eu2 的5d→4f跃迁的典型发射.添加不同浓度的H3BO3后可大大提高样品的发光强度.  相似文献   

14.
通过水热法合成了Zn的两种新型有机膦酸盐,Zn(4,4’-bipy)(HBCP)1和[Zn2(phen)2(BCP)(H2BCP)].H2O2。其中化合物1为二维结构,Zn2+采用四面体配位方式,而化合物2为零维结构,Zn2+有五配位和六配位2种的配位方式。还利用了一维FTIR、热微扰下的二维IR相关光谱、Fluorescence和UV-VisDRS光谱等研究手段对化合物进行了研究,探讨了其结构与性能的关系,发现了化合物1以350nm激发,在412和520nm左右出现两个宽带发射峰,而化合物2在336nm激发下只在398nm处出现宽带发射峰。  相似文献   

15.
采用高温固相反应法制备了xCe~(3+)(x=0.01%,0.05%,0.10%和0.30%)激活的Sr_(1-x)Al_2Si_2O_8近紫外荧光粉,利用X射线衍射(XRD)和扫描电镜(SEM)检测出荧光粉的物相结构,通过光致发光谱(PL)和激发光谱(PLE)表征了荧光粉的发光性质。结果显示,在中波紫外光激发下,发射峰位于长波紫外区,归属于Ce~(3+)的5d→2 F5/2和5d→2 F7/2跃迁。激发波长308nm时,观察到近紫外SrAl_2Si_2O_8荧光粉的发光强度随Ce~(3+)掺杂量增加而先增大后减小,同时发射峰位置红移。280和325nm波长选择性激发条件下的差异性发射行为表明SrAl_2Si_2O_8∶Ce~(3+)具有两种性质不同的发光中心,该结论由监测320和390nm发射时获得的形状具有明显区别的激发光谱亦可得以验证。离子半径的匹配性支持Ce~(3+)优先取代Sr~(2+),同时Van Uitert的经验公式估算结果推断出低浓度的Ce~(3+)生成九配位的Ce(Ⅰ)发光中心,高浓度掺杂情况下部分相互近邻的Ce~(3+)有效配位数减小,形成八配位的Ce(Ⅱ)发光中心。紫外280nm激发下峰位348nm的发射谱带源于Ce(Ⅰ)和Ce(Ⅱ)发光中心共同贡献,紫外325nm激发下发射峰位于378nm的发射带则主要对应于Ce(Ⅱ)发光中心。紫外光激发下Ce~(3+)发射出较强的近紫外光,表明SrAl_2Si_2O_8∶Ce~(3+)是一种适用于研发紫外荧光光源的荧光粉体材料。  相似文献   

16.
Zhang S  Liang H  Liu Y  Liu Y  Hou D  Zhang G  Shi J 《Optics letters》2012,37(13):2511-2513
A series of Zn(1-x)Mn(x)Al(2)O(4) (x=0.001~0.08) phosphors were synthesized by a traditional solid-state reaction route. Their photoluminescence under vacuum ultraviolet (VUV, energy E>50000 cm(-1), wavelength λ<200 nm) and cathodoluminescence under low-voltage electron beam excitation were evaluated. The luminescence decays were also measured. The intense green emission was observed with a peak at about 510 nm upon 172/147 nm excitation. The luminescence of optimum phosphor Zn(0.99)Mn(0.01)Al(2)O(4) (ZAM) was compared with that of commercial green phosphor Zn(2)SiO(4):Mn(2+) (ZSM). The maximum emission intensity of ZAM is larger than that of ZSM under 172/147 nm and low-voltage electron beam excitation. The values of chromaticity coordinates reveal the phosphors can evidently enlarge the tricolor gamut. The results show that the ZnAl(2)O(4):Mn(2+) phosphors may be considered as candidates for Hg-free lamps, plasma flat backlights, and field emission backlights for liquid crystal displays.  相似文献   

17.
Sr1-xBaxAl2O4:Eu2+ , Dy3+磷光体的 制备及其发光特性   总被引:1,自引:1,他引:0       下载免费PDF全文
采用高温固相法在1 350 ℃弱还原气氛下制备了Sr1-xBaxAl2O4 : Eu2+ ,Dy3+ (x=0,0.2,0.4,0.6,0.8,1.0)长余辉材料,并对其微观结构和发光特性进行了分析。X射线衍射结果表明,当钡的掺杂摩尔分数x<0.4时,样品晶体结构为SrAl2O4单斜晶系结构;当x≥0.4时,样品晶体结构为BaAl2O4六角晶系结构;而且随着钡对锶的取代,两种晶体结构的晶格常数都发生了一定程度的膨胀。光致发光测试结果表明,当x从0增大到1.0时,样品发射波长峰值也相应由515 nm逐渐蓝移到494 nm。通过热释光谱测试表明, SrAl2O4结构的样品的热释光峰所对应的温度比BaAl2O4 结构的要高,且对应SrAl2O4结构的样品的余辉时间更长,初始亮度更高。  相似文献   

18.
采用高温固相反应法合成了掺杂Eu3 及Tb3 的17MO-7.88Y2O3-75B2O3样品,研究了它们的光谱特性,结果表明,MO-T2O3-B2O3基质在真空紫外(VUV)区有很强的吸收,MgO-Y2O3-B2O3:Eu在147nm真空紫外光激发下产生对应于Eu3 的5D0→7FJ(J=1,2,3,4)跃迁的590和613 nm强发射峰;MgO-Y2O3-B2O3:Eu中Sr的引入使材料体系在147 nm附近的吸收和在613 nm附近的发射获得明显增强;MgO-Y2O3-B2O3:Tb的真空紫外激发谱除在147 nm附近的基质吸收外,还有对应于Tb3 的4f75d→4f8跃迁位于170,178,195,204,225 nm左右的一组谱峰,两者相互叠加使得材料在真空紫外区(120~220 nm)内都有很好的吸收.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号