首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Physica A》2006,368(2):541-550
For constant incoming flow far upstream of a freeway on-ramp, the flow downstream (throughput) and the rate of merging are studied with simulations using a generalized optimal velocity model. For large enough merge rates, a transition to synchronous flow occurs and the throughput is reduced by 0.5–0.7 vehicle on average for each vehicle that merges. For smaller merge rates there is free flow on the freeway and the throughput is the sum of the merge rate and the flow upstream of the on-ramp. Thus, there is an optimum merge rate that maximizes the throughput for a given incoming flow rate. These results hold for a wide range of initial vehicle position and velocity profiles and for single- as well as double-lane freeways. The results show that the transition to synchronous flow is due to the dynamics of the merge process, rather than to a limitation on the capacity of the downstream portion of the freeway. As a consequence, a new on-ramp metering algorithm, which controls the merge rate to prevent the transition to synchronous flow and concomitantly to maximize flow, has been developed.  相似文献   

2.
L.C. Davis 《Physica A》2012,391(4):1679-1691
Mitigation of congestion on a two-lane highway with an off-ramp and an on-ramp is simulated with three-phase traffic theory. Advanced travel information-the average velocity of vehicles near the bottleneck at an on-ramp-is used to divert vehicles at an upstream off-ramp. If enough vehicles divert, previously expanding synchronous flow congestion can be stalled and isolated to the region between the ramps. The introduction of lane restrictions (forbidding lane changing on the portion of highway between the ramps) in addition to diversion substantially reduces and essentially eliminates the congestion, restoring flow to nearly free-flow conditions.  相似文献   

3.
L.C. Davis 《Physica A》2010,389(17):3588-1691
A new method is proposed to predict the travel time on a highway route with a bottleneck caused by an on-ramp. The method takes advantage of the slow variation of the bottleneck throughput when congestion exists. The predicted travel time for a vehicle leaving the origin is given by the current number of vehicles on the route divided by the estimated throughput. The latter is an average of N/T recorded as each vehicle reaches the destination where N is the number of vehicles at the start of the trip and T is the time to complete the trip. Drivers divert to an off-ramp when the predicted travel time exceeds a target value. The target could be historical average travel times of alternative routes or chosen to limit the amount of congestion. Simulations employing three-phase traffic theory show that the travel time converges to the target value and remains close to or below it with the proposed prediction strategy. Strong oscillations in travel time obtained when other strategies are used for diversion do not develop with the new method because the inherent delay is effectively removed.  相似文献   

4.
Mixed traffic flow consisting of vehicles equipped with adaptive cruise control (ACC) and manually driven vehicles is analyzed using car-following simulations. Simulations of merging from an on-ramp onto a freeway reported in the literature have not thus far demonstrated a substantial positive impact of ACC. In this paper cooperative merging for ACC vehicles is proposed to improve throughput and increase distance traveled in a fixed time. In such a system an ACC vehicle senses not only the preceding vehicle in the same lane but also the vehicle immediately in front in the other lane. Prior to reaching the merge region, the ACC vehicle adjusts its velocity to ensure that a safe gap for merging is obtained. If on-ramp demand is moderate, cooperative merging produces significant improvement in throughput (20%) and increases up to 3.6 km in distance traveled in 600 s for 50% ACC mixed flow relative to the flow of all-manual vehicles. For large demand, it is shown that autonomous merging with cooperation in the flow of all ACC vehicles leads to throughput limited only by the downstream capacity, which is determined by speed limit and headway time.  相似文献   

5.
华雪东  王炜  王昊 《物理学报》2016,65(8):84503-084503
在考虑自适应巡航(adaptive cruise control, ACC)车辆的交通流模型的基础上, 建立了考虑ACC车辆影响的上匝道系统混合交通流模型, 研究ACC车辆引入对上匝道交通系统交通流的影响. 为了描述ACC车辆和手动驾驶车辆在交通流运行中的差异, 分别构建了基于常车头时距原则的ACC 车辆跟驰子模型和手动驾驶车辆MCD元胞自动机子模型; 基于上匝道车辆合流驶入主线的需求, 建立了换道子模型, 引入了表征驾驶员换道心理的参数λ. 通过对混合交通流模型进行数值模拟发现, ACC车辆的混入可以有效改善上匝道系统交通流的运行, 降低合流等事件对于交通流运行的影响, 抑制交通拥堵的时空范围及拥堵强度, 提高交通流的平均速度和流量. 此外在混合交通流模型中, ACC车辆期望车头时距Hd的减小与换道心理参数λ 的增大均可以提高混合交通流运行的速度和流量, 而合流区长度lw对混合交通流影响则因上匝道车辆驶入概率的不同而存在差异.  相似文献   

6.
Qiao-Ming Wang  Xiao-Yan Sun 《Physica A》2009,388(18):3931-3938
In this paper, we study the capacity of a highway with two on-ramps by using a cellular automata traffic flow model. We investigate how to improve the system capacity by assigning traffic flow to the two ramps. The system phase diagram is presented and different regions are classified. It is shown that in region I, in which both ramps are in free flow and the main road upstream of the ramps is in congestion, assigning a higher proportion of the demand to the upstream on-ramp could improve the overall flow, which is consistent with previous studies. This is explained through studying the spatiotemporal patterns and analytical investigations. In contrast, optimal assignment has not been observed in other regions. We point out that our result is robust and model independent under certain conditions.  相似文献   

7.
梅超群  黄海军  唐铁桥 《物理学报》2009,58(5):3014-3021
使用元胞自动机模型研究包含出入匝、主路和辅路的城市快速路系统的交通问题,为不同类型的路段定义了三种不同的换道规则.模拟结果表明,高入匝流量容易导致主路、匝道及其上游出现拥堵,高出匝流量容易使匝道出口车流与辅路内侧道车流发生冲突.入匝流量比较高时,主辅路为双车道的系统可以延缓交通拥堵和减少通行时间;当入匝流量较低时,双车道改善了单车道下辅路的通行状况. 关键词: 交通流 元胞自动机 换道规则 匝道  相似文献   

8.
宋玉鲲  赵小梅 《中国物理 B》2009,18(12):5242-5248
The combined bottleneck effect is investigated by modeling traffic systems with an on-ramp and a nearby bus stop in a two-lane cellular automaton model. Two cases, i.e. the bus stop locates in the downstream section of the on-ramp and the bus stop locates in the upstream section of the on-ramp, are considered separately. The upstream flux and downstream flux of the main road, as well as the on-ramp flux are analysed in detail, with respect to the entering probabilities and the distance between the on-ramp and the bus stop. It is found that the combination of the two bottlenecks causes the capacity to drop off, because the vehicles entering the main road from the on-ramp would interweave with the stopping (pulling-out) buses in the downstream (upstream) case. The traffic conflict in the former case is much heavier than that in the latter, causing the downstream main road to be utilized inefficiently. This suggests that the bus stop should be set in the upstream section of the on-ramp to enhance the capacity. The fluxes both on the main road and on the on-ramp vary with the distance between the two bottlenecks in both cases. However, the effects of distance disappear gradually at large distances. These findings might give some guidance to traffic optimization and management.  相似文献   

9.
Usually there are multi-lane on the main road of the on-ramp system. The drivers may decelerate for more safety when they are near the on-ramp. In addition, the car velocity may be restricted according to the traffic regulation. In this paper, we study phenomenon using the cellular automata traffic flow model. We find that: (i) the phase diagram of the two-lane on-ramp system appears a new region, in which the traffic of the on-ramp reaches maximum flow. (ii) The introduction of restricted velocity region will decrease capacity of the on-ramp, but reduce the drastic velocity fluctuation near the on-ramp.  相似文献   

10.
Shuyan He  Liying Song 《Physica A》2010,389(4):825-836
In traffic system, driving behaviors change with the surrounding traffic perceived by drivers, resulting in the complex spatio-temporal traffic patterns. Accordingly, in the majority of traffic models, vehicle accelerations are described by dynamic equations based on driving behavior, system dynamics and some underlying steady-state velocity-gap (bumper-to-bumper spacing) relation in order to guarantee the realistic human behavior. This paper proposes a deterministic car-following model based on a multi-branch fundamental diagram with each branch representing a particular category of driving style. Furthermore, an additional dynamic perception equation is introduced to reflect the driving style adaptation in response to the change in surrounding traffic situations. With simulation based on the proposed “driver perception model” (DP model), empirical findings of traffic breakdown and observed spatio-temporal patterns at on-ramp vicinity are reproduced. Furthermore, comparison results show the consistency between numerical simulation and the real traffic data of Beijing urban freeway.  相似文献   

11.
D. Ngoduy  S.P. Hoogendoorn 《Physica A》2009,388(13):2705-2716
This paper presents a continuum approach to model the dynamics of cooperative traffic flow. The cooperation is defined in our model in a way that the equipped vehicle can issue and receive a warning massage when there is downstream congestion. Upon receiving the warning massage, the (up-stream) equipped vehicle will adapt the current desired speed to the speed at the congested area in order to avoid sharp deceleration when approaching the congestion. To model the dynamics of such cooperative systems, a multi-class gas-kinetic theory is extended to capture the adaptation of the desired speed of the equipped vehicle to the speed at the downstream congested traffic. Numerical simulations are carried out to show the influence of the penetration rate of the equipped vehicles on traffic flow stability and capacity in a freeway.  相似文献   

12.
Jiuh-Biing Sheu  Hai Yang   《Physica A》2008,387(16-17):4327-4348
This paper investigates an integrated freeway traffic management system, which coordinates both dynamic toll pricing and ramp control strategies for the purpose of dynamic freeway congestion management. The proposed integrated dynamic toll-ramp control methodology is built mainly on the principles of stochastic optimal control approaches, involving two developmental procedures. First, through detector configurations and system specification, a discrete-time nonlinear stochastic system is formulated to characterize the time-varying relationships of system states, control variables, and traffic data. Then, by employing the extended Kalman filtering technology, a stochastic optimal control based algorithm is proposed to execute the integrated dynamic toll and ramp control mechanism. With the aid of the Paramics microscopic traffic simulator, numerical studies under various simulated freeway congestion scenarios are conducted. Corresponding numerical results demonstrate the applicability of the proposed methodology in response to diverse freeway traffic congestion phenomena, and its relative advantages in improving both the average travel time and hourly throughputs by 16.4% and 16.5%, respectively.  相似文献   

13.
高速公路入匝控制的一个元胞自动机模型   总被引:1,自引:0,他引:1       下载免费PDF全文
采用元胞自动机模型研究高速公路入匝控制问题. 利用主路上测定区域内的车辆数设计了一种新型入匝信号控制方法,模拟分析了各种参数对主路和匝道交通的影响. 结果表明,设置匝道信号灯可以保证主路交通畅通,尤其是匝道处的车辆到达率比较高时效果非常明显. 测定区域位置、抑制入匝车流量以及并道区长度的不同组合可以导致不同的主路和匝道交通流,合理搭配这三个参数可以兼顾主路和匝道的流量和通行时间.测定区域应该设置在并道段前或并道段上游的适当位置. 关键词: 交通流 元胞自动机 入匝控制 并道规则  相似文献   

14.
Realizing Wardrop equilibria with real-time traffic information   总被引:1,自引:0,他引:1  
L.C. Davis 《Physica A》2009,388(20):4459-4474
A Wardrop equilibrium for multiple routes from the same origin to the same destination requires equal travel time on each path used. With the advent of real-time traffic data regarding travel times on alternative routes, it becomes important to analyze how best to use the information provided to drivers. In particular, can a Wardrop equilibrium, which is a desired state, be realized? Simulations using a realistic traffic model (the three-phase model) on a two-route example are presented to answer this question. One route (the main line) is a two-lane highway with a stalled vehicle in the right lane and the other route is a low-speed bypass. For a critical incoming flow of vehicles, a phase transition between free flow and congested flow near the stalled vehicle is observed, making this a challenging example. In the first scenario, drivers choose routes selfishly on the basis of current travel times. The result is strong oscillations in travel time because of the inherent delay in the information provided. The second scenario involves a hypothetical control system that limits the number of vehicles on the main line to prevent the free-flow to congested-flow phase transition by diverting sufficient flow to the bypass. The resulting steady state is neither a Wardrop equilibrium nor a system optimum, but an intermediate state in which the main-line travel time is less than on the bypass but the average for all vehicles is close to a minimum. In a third scenario, anticipation is used as a driver-advice system to provide a fair indicator of which route to take. Prediction is based on real-time data comparing the number of vehicles on the main line at the time a vehicle leaves the origin to the actual travel time when it reaches the destination. Steady states that approximate Wardrop equilibria, or at least as close to them as can be expected, are obtained. This approach is also applied to an example with a low-speed boundary condition imposed at the destination in place of a stalled vehicle. The steady state flow approaches a Wardrop equilibrium because there is no abrupt change in travel time due to a phase transition.  相似文献   

15.
The aim of this paper is to study traffic properties in an on/off-ramp system with a bus stop close to the on/off ramp. The location of the bus stop in the on/off-ramp (thereafter downstream or upstream case) is discussed. The simulation results show that in the two ramp systems, the reasons for traffic congestions are different. In the on-ramp system, buses and cars coming from on-ramp interweave each other, while in the off-ramp system, busesinterweave with cars exiting to off-ramp. Thus, in the on-ramp (off-ramp) system, the upstream (downstream) bus stop is helpful to reduce the interweaving situation. Moreover, the negative effect will disappear when the distance between the bus stop and the on/off-ramp is more than 20 cells (i.e. 150 m). These qualitative findings may provide some suggestions on traffic management and optimization.  相似文献   

16.
Zhong-Yu Li 《中国物理 B》2022,31(4):40502-040502
Accurate prediction of road traffic flow is a significant part in the intelligent transportation systems. Accurate prediction can alleviate traffic congestion, and reduce environmental pollution. For the management department, it can make effective use of road resources. For individuals, it can help people plan their own travel paths, avoid congestion, and save time. Owing to complex factors on the road, such as damage to the detector and disturbances from environment, the measured traffic volume can contain noise. Reducing the influence of noise on traffic flow prediction is a piece of very important work. Therefore, in this paper we propose a combination algorithm of denoising and BILSTM to effectively improve the performance of traffic flow prediction. At the same time, three denoising algorithms are compared to find the best combination mode. In this paper, the wavelet (WL) denoising scheme, the empirical mode decomposition (EMD) denoising scheme, and the ensemble empirical mode decomposition (EEMD) denoising scheme are all introduced to suppress outliers in traffic flow data. In addition, we combine the denoising schemes with bidirectional long short-term memory (BILSTM) network to predict the traffic flow. The data in this paper are cited from performance measurement system (PeMS). We choose three kinds of road data (mainline, off ramp, on ramp) to predict traffic flow. The results for mainline show that data denoising can improve prediction accuracy. Moreover, prediction accuracy of BILSTM+EEMD scheme is the highest in the three methods (BILSTM+WL, BILSTM+EMD, BILSTM+EEMD). The results for off ramp and on ramp show the same performance as the results for mainline. It is indicated that this model is suitable for different road sections and long-term prediction.  相似文献   

17.
滕亚帆  高自友  贾斌  李峰 《物理学报》2008,57(3):1365-1374
采用元胞自动机模型研究了具有信号灯控制的主道为双车道的入匝道系统交通流特性.将信号灯设置在入匝道口处,通过信号灯来引导主道和匝道上的车辆通行.分析了信号灯控制对主道与匝道的车流量、系统通行能力以及入匝道口处的车流平均速度的影响.通过相图比较,说明信号灯控制的双车道入匝道系统能模拟出比信号灯控制的单车道入匝道系统更加符合实际的交通流特性.与姜锐提出的模型[Jiang R 2003 J. Phys. A 36 11713]结果相比,信号灯控制下的匝道系统的交通流状态得到改善并且道路通行能力有所提 关键词: 交通流 元胞自动机 入匝道系统 信号灯  相似文献   

18.
Velocity effect and critical velocity are incorporated into the average space gap cellular automaton model [J.F. Tian, et al., Phys. A 391 (2012) 3129], which was able to reproduce many spatiotemporal dynamics reported by the three-phase theory except the synchronized outflow of wide moving jams. The physics of traffic breakdown has been explained. Various congested patterns induced by the on-ramp are reproduced. It is shown that the occurrence of synchronized outflow, free outflow of wide moving jams is closely related with drivers time delay in acceleration at the downstream jam front and the critical velocity, respectively.  相似文献   

19.
In this paper, phase transitions are investigated in speed gradient model with an on-ramp. Phase diagrams of traffic flow composed of manually driven vehicles and adaptive cruise control (ACC) vehicles are studied, respectively. The traffic flow composed of ACC vehicles is modeled by enhancing propagation speed of small disturbance. The phase diagram of traffic flow composed of manually driven vehicles is similar to that in previous works, in which such states as pinned localized cluster (PLC), moving localized cluster (MLC), triggered stop-and-go traffic (TSG), oscillatory congested traffic (OCT), and homogeneous congested traffic (HCT) are reproduced. In the phase diagram of traffic flow composed of ACC vehicles, traffic stability is enhanced and such states as PLC, MLC, and TSG disappear. Furthermore, some interesting phenomena, such as stationary OCT upstream of on-ramp and appearance of second OCT in HCT, are identified.  相似文献   

20.
《Physics letters. A》2020,384(27):126668
Lane markings are painted on the ground to permit movement turns along traffic lanes at signalized junctions. Drivers have to follow the guidance to turn different directions to enter different downstream lanes. A new two-dimensional lattice hydrodynamic model is proposed to model the effects of a shared lane marking. The control method is used to analyze the model and new stability conditions are derived. A shared lane marking can divert traffic with different directions to enter different downstream lanes. Under different turning proportion, intensities of traffic at downstream vary. Results show that the traffic diversion could influence the flow stability. Shared lane marking is able to divert traffic flows to different downstream lanes. A feedback control signal is added in the proposed model. Revised stability conditions are obtained using the proposed control method. Numerical simulations present the results for the stability under different traffic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号