首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Morrison JP  Dixon S  Potter MD  Jian X 《Ultrasonics》2006,44(Z1):e1401-e1404
The crystalline texture of a sheet metal strongly affects its formability, so having knowledge of this texture is of great industrial relevance. The texture of rolled sheet metals, such as aluminium and steel, may be determined by ultrasonic measurement of the velocity of the zero order symmetric (S(0)) Lamb wave as a function of angle to the rolling direction. Electromagnetic acoustic transducers (EMATs) may perform this measurement without contacting the sample, therefore reducing perturbation to the plate wave system, as they are electromagnetically coupled to the sheet. The EMAT system measurements are non-destructive and may be made in real time, therefore offering advantages over the conventional techniques such as X-ray and neutron diffraction. It has been noticed that in the two EMAT pitch-catch system, the apparent arrival times of the ultrasonic waves change with variation in lift-off (distance between sample and transducer) due to impedance and aperture effects. For precise and accurate texture parameters to be obtained, accurate absolute ultrasonic velocity measurement is required and hence lift-off must be compensated for. This is of particular importance to online inspection systems where constant lift-off may be difficult to maintain. The impedance behaviour of various coil geometries has been investigated as a function of lift-off and frequency and compared to the received ultrasonic signal and the drive current pulse profile. Theoretical models have been used to explain the observed behaviour, and hence a scheme has been proposed for the compensation of lift-off effects in real time.  相似文献   

2.
Kawashima K 《Ultrasonics》2005,43(3):135-144
In this paper there is given a method to predict ultrasonic wave velocity variations along a wave path in the through-thickness direction in a plate from thickness resonance spectra. Thickness resonance spectra are numerically calculated and two simple rules used to predict the entire ultrasonic wave velocity variation are derived. In the calculation, the wave path is assumed to be straight along the thickness direction and the velocity variation is assumed to be either as a parabolic curve dependence or a linear dependence with respect to the distance from the surface and to be symmetric with respect to the plate center. To see if the numerical calculation method is reliable, thickness resonance frequencies of a sample with three-layers were measured by EMAT (electromagnetic acoustic transducer) with a good agreement between the measured and the calculated frequencies. This method can be applied to the ultrasonic measurement of material characteristics, internal stress or various other properties of plate materials.  相似文献   

3.
Shear Wave Field Radiated by an Electromagnetic Acoustic Transducer   总被引:1,自引:0,他引:1       下载免费PDF全文
The horizontally polarized ultrasonic shear wave field emitted by an electromagnetic acoustic transducer (EMAT) is studied by the surface force distribution on the EMAT approximately described as an inhomogeneous horizontal shear force. The shear wave directivity pattern is plotted by numerical calculations based on our strictly analytic solutions of the wave field we presented previously. An experimental system of EMAT generation and piezoelectric transducer reception is set up to check the predictions of the theoretical wave field by measuring the ultrasonic signals through aluminium block. The directivity pattern of the wave field obtained from the experimental results conforms the theoretical prediction, which lays a foundation for engineering applications of EMATs.  相似文献   

4.
Murayama R  Mizutani K 《Ultrasonics》2002,40(1-8):491-495
Lamb waves are normally utilized for inspecting thin metal sheets. Wheel type probes using piezoelectric oscillators have generally been used as the sensors for Lamb waves. Recently, the electromagnetic acoustic transducer (EMAT) has been developed and is beginning to be used as a Lamb wave detector. We have developed a useful type of transducer for Lamb waves. The new EMAT consists of a meander coil with a narrow distance of 2.5 mm and has a symmetrical structure in the vertical direction for both surface sides. The new EMAT can generate Lamb waves with variable wavelengths corresponding to the frequency range from approximately 300 kHz to 2.5 MHz and multiple modes, and can also generate selected symmetrical and anti-symmetrical mode Lamb waves. It is demonstrated that the optimum Lamb wave mode could be produced by the appropriate positioning of the EMATs and controlling the phase (same or inversed) of the electrical signal driving the device. The described EMAT can be used to examine steel (or other material) sheets of different thickness. It is also shown that the S0 (0.3 MHz) mode Lamb wave is the most effective for the deepest (up to 6 mm) penetration.  相似文献   

5.
为了进一步增强电磁超声检测技术在管道厚度测量领域的检测能力,该文对电磁超声传感器(EMAT)的结构进行了优化。提出了多磁铁对称分布型EMAT,能实现更小的磁铁体积,产生更强的表面剩磁强度。采用在硅钢表面开槽的方式限制涡流形成的区域,解决了涡流对测量的影响。建立厚度测量实验系统,对比出单磁铁型与多磁铁对称分布型EMAT在不同提离距离上检测信号的变化规律。结果表明,多磁铁对称分布型结构可通过增强EMAT的偏置磁场达到信噪比更优的效果。采用耐高温探头外壳和钐钴磁铁,提高了EMAT探头在高温环境下的检测性能。  相似文献   

6.
J.A. Ogilvy 《Ultrasonics》1986,24(6):337-347
A model for ultrasonic wave propagation in anisotropic and inhomogeneous materials is applied to the case of ultrasonic inspection of an austenitic V-butt weld manufactured by the downhand Manual Metal Arc technique. We examine the propagation behaviour of waves within the weld region and, in addition, model beam divergence behaviour. From this work we predict directions of low inspection sensitivity and also identify regions of material to which no ultrasound penetrates. The relative merits of the three different wave modes are examined, showing clearly the advantages of horizontally polarized shear waves for austenitic steel inspection. Vertically polarized shear waves are shown to be the least effective for such inspections. We discuss the relevance of this work to the ultrasonic non-destructive testing of austenitic steel components, concluding that care is needed over the choice of wave modes and angles, to ensure sensitive inspection of the whole weld material.  相似文献   

7.
理论和实验上研究了层析成像在管道结构导波检测中的适用性。在管的两个圆周带上分别布置发射和接收换能器,形成多点发射-多点接收的几何结构。将管中绕管道沿最短路径的螺旋方向到达接收换能器的模式作为感兴趣的模式,它们看起来像在弯曲的板中传播,称之为类兰姆波模式。给出了类兰姆波各射线路径走时的理论计算方法,并采用联合迭代重建技术(SIRT)对走时数据进行慢度图像重建。数值模拟和实验研究了管中横穿孔缺陷层析成像的输出并对健康管和缺陷管中类兰姆波的走时数据进行比较,发现穿过缺陷区域的类兰姆波因为绕过缺陷传播而呈现出更长的走时。文中也给出了两缺陷管道类兰姆波层析成像的数值模拟和实验结果,相比单缺陷的情况,射线较少穿过区域缺陷的重建图像质量下降。研究结果为采用类兰姆波模式进行管道缺陷无损评价提供了理论依据。   相似文献   

8.
With a thorough understanding of guided wave mechanics, researchers can predict which guided wave modes will have a high probability of success in a particular nondestructive evaluation application. However, work continues to find optimal mode and frequency selection for a given application. This “optimal” mode could give the highest sensitivity to defects or the greatest penetration power, increasing inspection efficiency. Since material properties used for modeling work may be estimates, in many cases guided wave mode and frequency selection can be adjusted for increased inspection efficiency in the field. In this paper, a novel mode and frequency perturbation method is described and used to identify optimal mode points based on quantifiable wave characteristics. The technique uses an ultrasonic phased array comb transducer to sweep in phase velocity and frequency space. It is demonstrated using guided interface waves for bond evaluation. After searching nearby mode points, an optimal mode and frequency can be selected which has the highest sensitivity to a defect, or gives the greatest penetration power. The optimal mode choice for a given application depends on the requirements of the inspection.  相似文献   

9.
The strong elastic anisotropy of the discrete unidirectional plies in a composite laminate interacts sensitively with the polarization direction of a shear ultrasonic wave propagating in the thickness direction. The transmitted shear wave can therefore be used to detect errors in the ply orientation and stacking sequence of a laminate. The sensitivity is particularly high when the polarization directions of the shear wave transmitter and receiver are orthogonal to each other. To understand the interaction between normal-incident shear waves and ply orientations in a laminate, a complete analytical model was developed using local and global transfer matrices. The model predicted the transmitted signal amplitude as a function of polarization angle of the transmitter and time (or frequency) for a given laminate and input signal. To alleviate the experimental problems associated with shear wave coupling, electromagnetic acoustic transducers (EMATs) and metal delay lines were used in the angular scan of the transmitted signal. The EMAT system had the added advantage of being applicable to uncured composite laminates. Experiments were performed on both cured and uncured laminates with common layups for model verification. The sensitivity of the measured shear wave signals to fiber misorientation and stacking sequence errors was also demonstrated.  相似文献   

10.
Enhancement of signal amplitudes from Rayleigh wave interaction at solid surface features has been investigated when signals were detected by an in-plane electromagnetic acoustic transducer (EMAT). A laser-ultrasound system was used to inspect surface-breaking slots, serving as artificial defects. Nd:YAG laser pulses were delivered onto a metal surface via an optical fiber and focused to a line source by a cylindrical lens. An in-plane EMAT receiver detected transient surface acoustic waves. A-scan signals and B-scan images from surface defects revealed increased signal amplitude up to 2.8+/-0.3 depending on the distance of the transducer from a slot. An explanation is based on the interaction of the EMAT sensor with the Rayleigh wave. A supporting computer model was derived to show that experimental signal enhancements were consistent with numerical predictions.  相似文献   

11.
基于电磁超声换能器的火车轮探伤研究   总被引:1,自引:0,他引:1       下载免费PDF全文
齐英豪 《应用声学》2015,34(2):102-106
利用电磁超声探伤方法对检测火车轮表面及近表面缺陷进行实验探究,从而保证车轮质量,避免事故发生。文章介绍了火车车轮电磁超声探伤的原理和方法。根据电磁超声表面波辐射扩散角的分布情况,得出利用电磁超声表面波进行车轮踏面探伤的可行性。将制作的小巧换能器探头与便携式电磁超声探伤仪配合,能够实现对车轮的快速探伤检测。通过大量的车轮探伤实验,检出了典型车轮踏面缺陷。根据检测波形特点并结合生产工艺情况,分析得出产生缺陷的原因。研究表明:电磁超声无损检测方法能够快速、有效检出车轮踏面缺陷。  相似文献   

12.
In this paper, experimental study on the surface stress measurement of a metallic material based on the Rayleigh wave acoustoelastic theory is introduced. A Rayleigh wave acoustoelastic formula deduced by Husson is optimized to estimate the surface stress of the material. Two micro Rayleigh wave transducers with 5 MHz frequency one of which is used for acoustic pulse emitter and another for receiver are used to determine the time of flight of Rayleigh wave propagating in a certain distance along the surface of the material. The difference in time of flight between two ultrasonic signals obtained in stressed and unstressed object surface is identified by the digital correlation method. A specimen made of Q235 steel and applied with tensile load is used for calibration to obtain the acoustoelastic coefficients of Q235 steel. Furthermore, some principal factors which may result in errors in the experiment are discussed and some measurements are proposed to prevent these errors. Finally the surface stress of a cantilever beam is detected by the Rayleigh wave acoustoelastic technique and the experimental result is well compared with the theoretical value.  相似文献   

13.
This paper concerns a study of the detectability of dry contact kissing bonds in adhesive joints using three ultrasonic inspection techniques. Conventional normal incidence longitudinal and shear wave inspection were conducted on dry contact kissing bonds using a standard damped ultrasonic transducer and an electro-magnetic acoustic transducer (EMAT) respectively. The detectability of the dry contact kissing bonds was assessed by calculating the reflection coefficient of the imperfect interface at varying loads for a number of surface roughnesses. A high power ultrasonic method was also employed to determine the non-linear behavior of the adhesive interface. The non-linearity of the interface was determined by the ratio of the amplitudes of the first harmonic and fundamental frequencies of the transmitted waveform. It was found that the high power technique showed the greatest sensitivity to these kissing bonds at low contact pressures, however at high loads conventional longitudinal wave testing was more sensitive. It was also noted that a combination of two or more techniques could provide enhanced information about the kissing bond compared to a single technique alone.  相似文献   

14.
Synthetic aperture focusing for defect reconstruction in anisotropic media   总被引:3,自引:0,他引:3  
Spies M  Jager W 《Ultrasonics》2003,41(2):125-131
Ultrasonic inspection plays an important role in numerous industrial fields. One of the prominent tasks with respect to quantitative nondestructive evaluation is the determination of location, shape, size and orientation of defects. In this respect, the synthetic aperture focusing technique (SAFT) has been successfully applied to isotropic materials over the years. In anisotropic media, however, its application suffers from several phenomena, which are the direction dependence of the ultrasonic velocities, the beam skewing effect and the modified transducer radiation characteristics. In this article, a SAFT imaging algorithm is presented which fully accounts for the nature of wave radiation and propagation within anisotropic materials. For three-dimensional defect reconstruction, the spatial dependence of the ultrasonic group velocities as well as the radiation characteristics of the transducer are exploited--respective algorithms have been implemented for orthotropic material symmetry. Tests have been performed on unidirectional composite material.  相似文献   

15.
Millions of miles of pipes are being used for the transportation, distribution, and local use of petroleum products, gas, water, and chemicals. Most of the pipes are buried in soil, leading to the significance of the study on the subject of guided wave propagation in pipes with soil influence. Previous investigations of ultrasonic guided wave propagation in an elastic hollow cylinder and in an elastic hollow cylinder coated with a viscoelastic material have led to the development of inspection techniques for bare and coated pipes. However, the lack of investigation on guided wave propagation in hollow cylinders embedded in infinite media like soil has hindered the development of pipe inspection methods. Therefore the influence of infinite media on wave propagation is explored in this paper. Dispersion curves and wave structures of both axisymmetric and nonaxisymmetric wave modes are developed. Due to the importance of the convergence of numerical calculations, the requirements of thickness and element number of the finite soil layer between hollow cylinder and infinite element layer are discussed, and an optimal combination is obtained in this paper. Wave structures are used for the mode identification in the non-monotonic region caused by the viscoelastic properties of coating and infinite media.  相似文献   

16.
In view of the various novel quantitative ultrasonic evaluation techniques developed using Lamb wave propagation, the influence of an important related phenomenon, backward transmission, is investigated in this paper. Using the discrete layer theory and a multiple integral transform method, the surface displacement and velocity responses of isotropic plates and cross-ply laminated composite plates due to the Lamb waves excited by parabolic- and piston-type transmitting transducers are evaluated. Analytical expressions for the surface displacement and velocity frequency response functions are developed. Based on this a large volume of calculations is carried out. Through examining the characteristics of the surface displacement and velocity frequency response functions and, especially, the different propagation modes' contributions to them, the influence of the backward wave transmission related to quantitative ultrasonic nondestructive evaluation applications is discussed and some important conclusions are drawn.  相似文献   

17.
The anomalous wave propagation imaging (AWPI) method is proposed for the laser ultrasonic propagation imaging system using a Q-switched laser and a laser mirror scanner to highlight the anomalies in complex structures. The AWPI algorithm was developed based on the observation that the waves from two adjacent scanning points are very similar, and that the propagation direction of the incident wave is different from that of the anomalous wave caused by structural anomalies including damage. The structural anomaly is highlighted by suppressing the incident waves and exaggerating the anomalous wave through adjacent waves subtraction after arrival time and amplitude matching. The variable time window amplitude mapping (VTWAM) method was also developed, based on the difference in arrival time between the residual incident wave and anomalous waves. The VTWAM method enhances anomaly visualization and sizing, notably for composite damages, by mapping the amplitudes of the confining wave within the damage. Our results showed that the AWPI increased the signal-to-noise ratio of a back-surface hole damage in a steel plate by 13.76 dB, while in another inspection of a composite wing with two impact damages, the AWPI results enhanced by the VTWAM compared favorably with the results of the immersion ultrasonic C-scan. The AWPI and VTWAM adopt implicit spatial referencing wherein all necessary data can be obtained through a single-time scan, therefore circumvent the disadvantages of conventional temporal baseline referencing.  相似文献   

18.
Guided wave helical ultrasonic tomography of pipes   总被引:1,自引:0,他引:1  
Ultrasonic guided waves have been used for a wide variety of ultrasonic inspection techniques. We describe here a new variation called helical ultrasound tomography (HUT) that uses guided ultrasonic waves along with tomographic reconstruction algorithms that have been developed by seismologists for what they call "cross borehole" tomography. In HUT, the Lamb-like guided waves travel the various helical criss-cross paths between two parallel circumferential transducer arrays instead of the planar criss-cross seismic paths between two boreholes. Although the measurement itself is fairly complicated, the output of the tomographic reconstruction is a readily interpretable map of a quantity of interest such as pipe wall thickness. In this paper we demonstrate HUT via laboratory scans on steel pipe segments into which controlled thinnings have been introduced.  相似文献   

19.
Interaction of the fundamental shear horizontal mode with through-thickness cracks in an isotropic plate is studied in the context of low frequency array imaging for ultrasonic guided wave nondestructive evaluation with improved resolution. Circular wave fronts are used and the symmetric case where a line from the wave source bisects the crack face normally is considered. Finite element simulations are employed to obtain trends subject to analytical and experimental validation. The influence of the crack length and of the location of source and measurement positions on the specular reflection from the crack face is first examined. These studies show that low frequency short range scattering is strongly affected by diffraction phenomena, leading to focusing of energy by the crack in the backscatter direction. Study of the diffraction from the crack edges reveals contributions due to a direct diffraction at the edges and multiple reverberations across the crack length. A simple diffraction model is shown to adequately represent cracks up to moderate lengths, providing an easy means of estimating the far field of the waves. The presence of multiple diffraction components is quantitatively established and surface waves on the crack face are identified as equivalent to low frequency symmetric modes of rectangular ridge waveguides.  相似文献   

20.
商德江  钱治文  何元安  肖妍 《物理学报》2018,67(8):84301-084301
针对浅海信道下弹性结构声辐射预报尚无高效可靠的研究方法,提出了一种浅海信道下弹性结构声辐射快速预报的联合波叠加法.该方法结合了浅海信道传输函数、多物理场耦合数值计算法和波叠加法理论,运用该方法可对浅海信道下弹性结构辐射声场进行快速预报.经数值法和解析解法验证后,从信道下辐射源、环境影响和辐射声场测量的角度研究分析了浅海信道下弹性圆柱壳的声辐射特性,阐释了进行浅海信道下结构声辐射研究的必要性.研究结果表明,仅在低频浅海信道下弹性结构可近似等效为点源,信道上下边界对声场产生显著的耦合影响,高频段的空间声场指向性分布尤为明显,垂直线列阵进行信道下结构辐射声功率测量时,测量结果受到信道环境边界和潜深的影响较大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号