首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A model and experimental study of fiber orientation effects on shear wave propagation through composite laminates
Authors:Fei Dong  Hsu David K
Institution:Center for Nondestructive Evaluation, Iowa State University, Ames 50011-3042, USA.
Abstract:The strong elastic anisotropy of the discrete unidirectional plies in a composite laminate interacts sensitively with the polarization direction of a shear ultrasonic wave propagating in the thickness direction. The transmitted shear wave can therefore be used to detect errors in the ply orientation and stacking sequence of a laminate. The sensitivity is particularly high when the polarization directions of the shear wave transmitter and receiver are orthogonal to each other. To understand the interaction between normal-incident shear waves and ply orientations in a laminate, a complete analytical model was developed using local and global transfer matrices. The model predicted the transmitted signal amplitude as a function of polarization angle of the transmitter and time (or frequency) for a given laminate and input signal. To alleviate the experimental problems associated with shear wave coupling, electromagnetic acoustic transducers (EMATs) and metal delay lines were used in the angular scan of the transmitted signal. The EMAT system had the added advantage of being applicable to uncured composite laminates. Experiments were performed on both cured and uncured laminates with common layups for model verification. The sensitivity of the measured shear wave signals to fiber misorientation and stacking sequence errors was also demonstrated.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号