首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shear Wave Field Radiated by an Electromagnetic Acoustic Transducer   总被引:1,自引:0,他引:1       下载免费PDF全文
The horizontally polarized ultrasonic shear wave field emitted by an electromagnetic acoustic transducer (EMAT) is studied by the surface force distribution on the EMAT approximately described as an inhomogeneous horizontal shear force. The shear wave directivity pattern is plotted by numerical calculations based on our strictly analytic solutions of the wave field we presented previously. An experimental system of EMAT generation and piezoelectric transducer reception is set up to check the predictions of the theoretical wave field by measuring the ultrasonic signals through aluminium block. The directivity pattern of the wave field obtained from the experimental results conforms the theoretical prediction, which lays a foundation for engineering applications of EMATs.  相似文献   

2.
基于电磁超声换能器的火车轮探伤研究   总被引:1,自引:0,他引:1       下载免费PDF全文
齐英豪 《应用声学》2015,34(2):102-106
利用电磁超声探伤方法对检测火车轮表面及近表面缺陷进行实验探究,从而保证车轮质量,避免事故发生。文章介绍了火车车轮电磁超声探伤的原理和方法。根据电磁超声表面波辐射扩散角的分布情况,得出利用电磁超声表面波进行车轮踏面探伤的可行性。将制作的小巧换能器探头与便携式电磁超声探伤仪配合,能够实现对车轮的快速探伤检测。通过大量的车轮探伤实验,检出了典型车轮踏面缺陷。根据检测波形特点并结合生产工艺情况,分析得出产生缺陷的原因。研究表明:电磁超声无损检测方法能够快速、有效检出车轮踏面缺陷。  相似文献   

3.
An experimental technique for the determination of the relative acoustic nonnnearity parameter of materials with Rayleigh waves excited directly is presented. Rayleigh surface waves were directly generated in materials by the specific piezoelectric transducer fixed at the specimen's edge, and were measured with a laser interferometer system. After the Rayleigh wave signals were processed with FFT method, the relative acoustic nonlinearity parameter of materials was then determined from the absolute magnitudes of the fundamental and second harmonics of Rayleigh surface waves. This procedure was used to determine the acoustic non- linearity parameters of aluminum alloys 2024 and 6061. It is shown that the results comply well with those available in the literature; this method can thus be used to evaluate the acous- tic nonlinearity parameter of materials effectively. This technique can provide a practical way in the nondestructive characterization of degradation of materials and structures in the early fatigue life.  相似文献   

4.
Edwards RS  Dixon S  Jian X 《Ultrasonics》2006,44(1):93-98
In non-destructive testing for cracks it is not sufficient to simply detect the presence of a defect, but it is essential to have an accurate measure of the depth. Accurate calibration of the techniques used to gauge defect size is therefore necessary. Recent progress in the field of non-contact ultrasonic testing has led to the development of a practically viable system for generating and detecting wideband Rayleigh waves on electrically conducting or magnetic samples using electro-magnetic acoustic transducers (EMATs). This system has been used to gauge the depth and position of surface breaking defects, and has many applications including metal billet testing and detecting and sizing gauge corner cracking in rails. In this paper we report experiments calibrating the response of EMATs when a defect is present between the generator and receiver, using a calibration sample with slots machined perpendicular to the surface to simulate surface breaking cracks. The depth of the defect can be gauged in the time domain and frequency domain, with an accurate 'fingerprint' of the position given by an enhancement of the signal when the receiver is close to the defect. The best choice of EMAT design for different applications is discussed, as is the best position for the receive EMAT to avoid areas of interference between the Rayleigh wave and bulk waves diffracted from the crack tip.  相似文献   

5.
The analysis of adhesive bonds using electromagnetic acoustic transducers   总被引:1,自引:0,他引:1  
The paper presented here outlines a technique for examining aerospace adhesive bonds using electromagnetic acoustic transducers (EMAT). The main restriction on the use of bonded structures is the lack of a reliable, applicable non-destructive test. Simple acoustic theory shows that a shear wave at normal incidence to an interface should be a more sensitive probe of interfacing coupling than a longitudinal wave. Conventional piezoelectric shear transducers require a very viscous couplant which makes scanning problematic. The EMAT described here consists of a pancake coil, and a permanent magnet behind the coil provides a static magnetic field normal to the surface of the sample and the plane of the coil. The EMATs used have the advantage of generating broadband radially polarized shear waves, while requiring no acoustic couplant. They are also comparable in size to typical piezoelectric transducers. The broadband nature of the transducer gives it a high spatial resolution in the direction of wave propagation. Experiments performed on plate-like samples have successfully detected deliberately constructed defects, while monitoring the adhesive thickness. Defects have been identified using a C-scan technique using a single EMAT in send-receive mode from either side of the bond.  相似文献   

6.
Dutton B  Boonsang S  Dewhurst RJ 《Ultrasonics》2006,44(Z1):e657-e665
A new magnetic arrangement is described for use with an in-plane electromagnetic acoustic transducer (EMAT) for detecting laser-generated ultrasound. The magnetic flux density was modelled and validated. Modelling was accomplished in 3D using finite element software to predict new magnet spatial distributions. A configuration was found which increased the magnetic flux density by a factor of 1.8+/-0.2, compared to magnetic configurations previously used in conventional designs. Model predictions were implemented and confirmed experimentally. As a result, laser ultrasound Rayleigh waves have been used to verify the performance of this sensor system. It was establish that the EMAT's in-plane sensitivity increased, while the frequency bandwidth improvement factor was about 1.9+/-0.2. The resonant frequency increased from 6.5 MHz and 16.4 MHz, with both exhibiting an extended frequency response well beyond the resonant values. For maximum frequency response, it was demonstrated that added elements such as cables may have a deleterious effect. In particular the length of the cable, which in turn adds capacitance to the overall circuit, will decrease the frequency response of the EMAT. The frequency response was compared with a previous sensor, to provide an increased resonant frequency factor of 2.5+/-0.2.  相似文献   

7.
A method is proposed to measure the stress on a tightened bolt using an electromagnetic acoustic transducer (EMAT). A shear wave is generated by the EMAT, and a longitudinal wave is obtained from the reflection of the shear wave due to the mode conversion. The ray paths of the longitudinal and the shear wave are analyzed, and the relationship between the bolt axial stress and the ratio of time of flight between two mode waves is then formulated. Based on the above outcomes, an EMAT is developed to measure the bolt axial stress without loosening the bolt, which is required in the conventional EMAT test method. The experimental results from the measurement of the bolt tension show that the shear and the mode-converted longitudinal waves can be received successfully, and the ratio of the times of flight of the shear and the mode-converted longitudinal waves is linearly proportional to the bolt axial tension. The non-contact characteristic of EMAT eliminates the effect of the couplant and also makes the measurement more convenient than the measurement performed using the piezoelectric transducer. This method provides a promising way to measure the stress on tightened bolts.  相似文献   

8.
In this paper, we investigate a method of selectively enhancing the single mode signal of a Lamb wave by using a meander-coil electromagnetic acoustic transducer(EMAT) with a new magnetic configuration. We use the Lamb antisymmetric(A0) mode and symmetric(S0) mode as an example for analysis. The analytical expression of the magnitude of the spatial Fourier transform of the Lorentz force generated by different meander coils is used to determine the optimal driving frequency for single mode generation. The numerical calculation is used to characterize the new magnetic configuration and the conventional EMAT magnet. Experimental examinations of each meander coil in combination with the conventional and new magnetic configuration show that the Lamb wave signal can be selectively enhanced by choosing the appropriate driving frequency and coil parameters through using the improved meander-coil EMAT.  相似文献   

9.
在线超声检测系统中螺旋线圈换能器的应用*   总被引:1,自引:1,他引:0       下载免费PDF全文
针对在线车轮超声检测系统的工程应用,研究了圆形螺旋线圈电磁超声换能器由洛伦兹力换能机制在钢中产生的辐射声场。给出了涡流、等效表面力源和辐射声场的计算方法,分析了圆形螺旋线圈换能器在钢试块上的辐射指向性。结果表明,辐射的圆周径向偏振横波为两边瓣中空指向性,对理解圆形螺旋线圈换能器的辐射声场和在重载货车车轮轮辋在线辋裂缺陷检测中的工程应用具有一定的指导意义。  相似文献   

10.
Murayama R  Mizutani K 《Ultrasonics》2002,40(1-8):491-495
Lamb waves are normally utilized for inspecting thin metal sheets. Wheel type probes using piezoelectric oscillators have generally been used as the sensors for Lamb waves. Recently, the electromagnetic acoustic transducer (EMAT) has been developed and is beginning to be used as a Lamb wave detector. We have developed a useful type of transducer for Lamb waves. The new EMAT consists of a meander coil with a narrow distance of 2.5 mm and has a symmetrical structure in the vertical direction for both surface sides. The new EMAT can generate Lamb waves with variable wavelengths corresponding to the frequency range from approximately 300 kHz to 2.5 MHz and multiple modes, and can also generate selected symmetrical and anti-symmetrical mode Lamb waves. It is demonstrated that the optimum Lamb wave mode could be produced by the appropriate positioning of the EMATs and controlling the phase (same or inversed) of the electrical signal driving the device. The described EMAT can be used to examine steel (or other material) sheets of different thickness. It is also shown that the S0 (0.3 MHz) mode Lamb wave is the most effective for the deepest (up to 6 mm) penetration.  相似文献   

11.
This paper concerns a study of the detectability of dry contact kissing bonds in adhesive joints using three ultrasonic inspection techniques. Conventional normal incidence longitudinal and shear wave inspection were conducted on dry contact kissing bonds using a standard damped ultrasonic transducer and an electro-magnetic acoustic transducer (EMAT) respectively. The detectability of the dry contact kissing bonds was assessed by calculating the reflection coefficient of the imperfect interface at varying loads for a number of surface roughnesses. A high power ultrasonic method was also employed to determine the non-linear behavior of the adhesive interface. The non-linearity of the interface was determined by the ratio of the amplitudes of the first harmonic and fundamental frequencies of the transmitted waveform. It was found that the high power technique showed the greatest sensitivity to these kissing bonds at low contact pressures, however at high loads conventional longitudinal wave testing was more sensitive. It was also noted that a combination of two or more techniques could provide enhanced information about the kissing bond compared to a single technique alone.  相似文献   

12.
Murray PR  Dewhurst RJ 《Ultrasonics》2002,40(1-8):771-776
Quantitative time-of-flight analysis of laser-generated shear waves and longitudinal-shear mode-converted waves has demonstrated an effective method for non-contact monitoring of the thickness of metal plates. Q-switched Nd:YAG laser pulses with energies of approximately 18 mJ, delivered to the material surface via an optical fibre and focused to a line source by a cylindrical lens, excited surface waves, longitudinal and shear waves. Bulk waves propagated through the plate to be reflected from the far surface. Returning waves were detected using an electro-magnetic acoustic transducer (EMAT) sensitive to in-plane motion. The compilation of B-scans generated as the sensor head was moved along the material's surface to produce a 2-D intensity profile made any changes in the plate thickness easy to visualise. The longitudinal-shear (L-S) and shear-longitudinal (S-L) mode-converted waves provided a method of simultaneously monitoring two different points on the far surface enabling any changes in the material thickness to be clearly identified. This method was used to determine the thickness of aluminium samples ranging in from 5 to 70 mm.  相似文献   

13.
表面垂直裂痕诱发瑞利波散射的数值分析   总被引:3,自引:1,他引:2       下载免费PDF全文
激光激发的声表面波为材料表面缺陷的检测提供了有力的工具.针对含缺陷材料在模型边界上的复杂性,建立了基于平面应变的有限元模型并选取了相同厚度但含有不同深度的表面裂痕的单层铝板进行了对比计算,得到了声表面波经过不同深度的表面裂痕时产生的反射及透射信号波形的时域特征.进而引入了基于Wigner-Ville分布理论的时-频分析方法计算裂痕前、后散射的瞬态表面波的能量在时间-频率平面内分布的情形.结果显示:声表面波接近中心频率的某一频率成分在经过深度小于其中心波长的表面缺陷时,随着裂痕深度的增加,对应于该频率的反射系数呈现单调递增的趋势;而透射系数呈现递减的特征,这一结果可以为激光超声检测表面缺陷提供一种定量的表征手段.  相似文献   

14.
A prototype of a tomography system for reconstructing the distributions of acoustic nonlinear parameters is developed and manufactured on the basis of the effect of nonlinear noncollinear interaction of three primary waves. Application of coded primary signals with further correlation processing of a detected combination signal makes it possible to reconstruct the complete image of an object as a result of a single experiment using a small number of transducers, i.e., three radiators and one receiver. A mirror system is proposed, consisting of two coaxial conical acoustic mirrors that make it possible to transform the front of a wave from a cylindrical transducer into a homogeneous quasi-plane beam with a large width close to the real medical diagnostics requirements. Results of physical experiments are given.  相似文献   

15.
S Dixon  C Edwards  S B Palmer 《Ultrasonics》2001,39(6):445-453
Aluminium sheet thickness has been calculated from ultrasonic data obtained using a send-receive, radially polarised electromagnetic acoustic transducer (EMAT). Sheets in the thickness range between 0.1 and 0.5 mm have been measured using this non-contact approach at a stand-off of up to 1.5 mm. Normal incidence shear waves generated and detected in the sheet and the resultant waveforms have been processed using transit time measurements and Fourier analysis. Two broad band EMAT systems have been used to perform the measurements with centre frequencies of approximately 5 MHz and frequency content up to 10 and 20 MHz respectively. The most accurate measurements of thickness on thin sheets have been made using Fourier analysis and have yielded measurements accurate to within 0.2% (or 0.4 microm) for 280 microm thick aluminium sheets. Discrete shear wave echoes can be observed for sheets down to a thickness of 250 microm using the higher frequency EMAT system. However temporal measurements of these signals yield lower accuracy results when compared to the Fourier analysis method which is capable of sub-micron accuracy.  相似文献   

16.
A narrow band laser-generated acoustic signal was created using a 4-element lenticular array. This arrangement of the array produces an acoustical signal with frequency content that is compatible with the response of a noncontact and remote broadband receiver, such as a capacitive air-coupled transducer. To support the experimental observations, a simplified concept is presented to explain the effect of a line array source on the frequency content of a surface acoustic wave. The analytical model solution for the wave front shape is derived from the point load solution of Lamb's problem that represents the displacement of a surface acoustic wave generated by an ablative line array. The distribution function, which was used for the model to represent the laser light energy, was tailored to depict the actual energy distribution that illuminates the lenticular array. Filtering functions are applied to the resultant surface displacement function to retain frequencies similar to those detected by the broadband 50 kHz-2.25 MHz receiver. The theoretical model showed good agreement with experimental results.  相似文献   

17.
We analyzed the acoustic waves propagating in a sphere to establish a useful guideline for the design of NDE apparatus and ball surface acoustic wave (SAW) device exploiting the diffraction-free propagation of SAW on a sphere. First, we calculated the laser-generated acoustic displacements both under ablation condition and under thermoelastic condition and verified experimentally the validity of the calculation. Next, the acoustic waves excited by out-of-plane stress and those excited by in-plane stress were compared. The results showed that when the out-of-plane stress was applied, the relative amplitudes of the bulk waves to that of the SAW were larger and the number of bulk waves was larger than that when the in-plane stress was applied, while the SAW had similar waveforms in each case. The ratio of the relative amplitude of the bulk waves for the out-of-plane stress and the in-plane stress was 3.1:1 at phi(1)=90 degrees and 1.67:1 at phi(1)=0 degrees. The large amplitude for the out-of-plane stress can be explained by wide directivities of bulk waves. Consequently, we found that it is necessary for ball SAW device to select a piezoelectric material and form of interdigital transducer so that the in-plane stress becomes dominant.  相似文献   

18.
Detection and characterization of defects in metal parts in industrial and commercial settings has typically been carried out by nondestructive ultrasonic inspection systems. Correct measurement of crack size is critical for lifetime prediction inspections. Normally, measurements are made based on far-field ultrasonic diffraction models and time-of-flight reflection signals making accurate measurements for parts less than approximately 25 mm in thickness impossible. In this work a hybrid noncontacting laser generation/broadband electromagnetic acoustic transducer (EMAT) detection system is used to characterize ideal cracks in aluminum in which the far-field condition for ultrasonic diffraction cannot be met. Time domain signals show that diffracted energy is measured in the geometrical shadow zone of the crack. Fourier transform methods are used to show that the frequency content of the diffracted signals is different than those from the waves that do not interact with the crack. Crack size measurements are made by using the frequency content of the ultrasonic signal rather than time-of-flight information.  相似文献   

19.
Jian X  Dixon S  Guo N  Edwards RS  Potter M 《Ultrasonics》2006,44(Z1):e1131-e1134
This paper investigates Rayleigh wave interaction with machined slots on flat aluminium blocks to simulate surface breaking cracks. Using a finite element method, Rayleigh wave scattering by narrow slots of varied depth ranging from 0.5 mm to 20 mm is calculated. Pulsed wideband Rayleigh waves with a centre frequency of 590 kHz and -6 dB bandwidth of 520 kHz is considered. Reflection and transmission coefficients are calculated and compare well with the published literature. We and other workers have reported enhancement of the measured amplitude or particle velocity of an apparent Rayleigh wave close to a surface defect. In this paper, it is found that the predicted enhancement of in-plane components of particle velocities close to a crack is significantly higher than that of the out-of-plane components of particle velocities which appears to be mainly due to the mode-converted surface skimming longitudinal wave from the crack that has mainly in-plane components near the sample surface. The enhancement of the in-plane particle velocity will be observed regardless of the type of in-plane sensitive ultrasonic detector used. The explanation of the discrepancy of the reflection and transmission coefficients obtained by pulsed and narrow band or pseudo continuous Rayleigh waves is discussed. The later-arriving Rayleigh waves from reverberation along the inside of the crack surface are observed, as has been previously reported by other workers, and this may also be used to gauge slot depth.  相似文献   

20.
Diffraction effects, taking place during nonlinear transformations in inhomogeneous acoustic fields, are experimentally investigated. The case of a convergent spherical wave front propagating in a uniform nonlinear medium, detection of an acoustic field in a focus, and receiving of the detected signal in the region of the initial wave front aperture are considered. A spherical piezoceramic transducer is used in the experiments as a focusing device. Broad-angle “nonlinear scattering” signals have been recorded at the experimental facility where a pulsed mode of focused transducer operation in water is implemented. The dependence of the amplitude of the signal, detected in the focal area, and its shape on the scattering direction, as well as on the distance between the focus and the receiving point, are studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号