首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The nonlinear ac stationary response of the magnetization of noninteracting uniaxial single-domain ferromagnetic particles acted on by superimposed dc and ac magnetic fields applied along the anisotropy axis is evaluated from the Fokker-Planck equation, expressed as an infinite hierarchy of recurrence equations for Fourier components of the relaxation functions governing longitudinal relaxation of the magnetization. The exact solution of this hierarchy comprises a matrix continued fraction, allowing one to evaluate the ac nonlinear response and reversal time of the magnetization. For weak ac fields, the results agree with perturbation theory. It is shown that the dc bias field changes substantially the magnetization dynamics leading to new nonlinear effects. In particular, it is demonstrated that for a nonzero bias field as the magnitude of the ac field increases the reversal time first increases and having attained its maximum at some critical value of the ac field, decreases exponentially.  相似文献   

2.
We study the control of gate voltage over the magnetization of a single-molecule magnet(SMM) weakly coupled to a ferromagnetic and a normal metal electrode in the presence of the temperature gradient between two electrodes.It is demonstrated that the SMM's magnetization can change periodically with periodic gate voltage due to the driving of the temperature gradient.Under an appropriate matching of the electrode polarization,the temperature difference and the pulse width of gate voltage,the SMM's magnetization can be completely reversed in a period of gate voltage.The corresponding flipping time can be controlled by the system parameters.In addition,we also investigate the tunneling anisotropic magnetoresistance(TAMR) of the device in the steady state when the ferromagnetic electrode is noncollinear with the easy axis of the SMM,and show the jump characteristic of the TAMR.  相似文献   

3.
Metal-oxide semiconductor field-effect transistors with ferromagnetic source- and drain-electrodes are fabricated on InAs. Tailored micromagnetic behavior of the ferromagnetic electrodes is achieved by use of a specific shape as well as in-plane external magnetic fields and is measured by magnetic-force microscopy. The field-effect in transistors with electrodes of defined magnetization is determined as a function of the gate voltage. The amplitude and the sign of abrupt resistance changes observed at points of irreversible switching of the ferromagnetic contacts' magnetization can be tuned by the gate voltage providing evidence for spin-polarized transport.  相似文献   

4.
We have performed a series of measurements to study the low temperature dynamics of an interacting magnetic nanoparticle system. The results obtained demonstrate striking memory effects in the dc magnetization and magnetic relaxation that support the existence of a spin-glass-like phase in interacting magnetic nanoparticles. Moreover, we observe an asymmetric response with respect to temperature change that supports a hierarchical picture, rather than the droplet model discussed in other works on nanoparticle systems.  相似文献   

5.
We report detailed studies of the non-equilibrium magnetic behavior of antiferromagnetic Co3O4 nanoparticles. The temperature and field dependence of magnetization, wait time dependence of magnetic relaxation (aging), memory effects, and temperature dependence of specific heat have been investigated to understand the magnetic behavior of these particles. We find that the system shows some features that are characteristic of nanoparticle magnetism such as bifurcation of field-cooled (FC) and zero-field-cooled (ZFC) susceptibilities and a slow relaxation of magnetization. However, strangely, the temperature at which the ZFC magnetization peaks coincides with the bifurcation temperature and does not shift on application of magnetic fields up to 1 kOe, unlike most other nanoparticle systems. Aging effects in these particles are negligible in both FC and ZFC protocols, and memory effects are present only in the FC protocol. We show that Co3O4 nanoparticles constitute a unique antiferromagnetic system which enters into a blocked state above the average Néel temperature.  相似文献   

6.
The magnetization reversal of a ferromagnetic Fe3O4 nanoparticle with a volume of the order of several thousands of cubic nanometers under the influence of spin-polarized current has been investigated on a high-vacuum scanning tunneling microscope, where one of the electrodes is a magnetized iron wire needle and the second electrode is a ferromagnetic nanoparticle on a graphite substrate. The measured threshold current of magnetization reversal, i.e., the lowest value of the current corresponding to the magnetization reversal, is found to be Ithresh ≈ 9 nA. A change in the magnetization of a nanoparticle is revealed using the giant magnetoresistance effect, i.e., the dependence of the weak polarized current (I < Ithresh) on the relative orientation of the magnetizations of the electrodes.  相似文献   

7.
Using the analytical and numerical solutions of the Landau–Lifshitz equation, we calculate the phase diagrams for the precession states of the nanoparticle magnetization in a rotating magnetic field. We show that there are three different scenarios for the magnetization switching. The bias magnetic field applied antiparallel to the nanoparticle magnetization strongly decreases the switching amplitudes and frequencies of the rotating field.  相似文献   

8.
We present a theory of single-electron tunneling transport through a ferromagnetic nanoparticle in which particle-hole excitations are coupled to spin collective modes. The model employed to describe the interaction between quasiparticles and collective excitations captures the salient features of a recent microscopic study. Our analysis of nonlinear quantum transport in the regime of weak coupling to the external electrodes is based on a rate-equation formalism for the nonequilibrium occupation probability of the nanoparticle many-body states. For strong electron-boson coupling, we find that the tunneling conductance as a function of bias voltage is characterized by a large and dense set of resonances. Their magnetic field dependence in the large-field regime is linear, with slopes of the same sign. Both features are in agreement with recent tunneling experiments.  相似文献   

9.
Using the tight-binding approximation and the nonequilibrium Green’s function approach, we investigate the coherent spin-dependent transport in planar magnetic junctions consisting of two ferromagnetic (FM) electrodes separated by a graphene flake (GF) with zigzag or armchair interfaces. It is found that the electron conduction strongly depends on the geometry of contact between the GF and the FM electrodes. In the case of zigzag interfaces, the junction demonstrates a spin-valve effect with high magnetoresistance (MR) ratios and shows negative differential resistance features for a single spin channel at positive gate voltage. In the case of armchair interfaces, the current-voltage characteristics behave linearly at low bias voltages and hence, both spin channels are in on state with low MR ratios.  相似文献   

10.
We investigate the time-dependent Kondo effect in a single-molecule magnet (SMM) strongly coupled to metallic electrodes. Describing the SMM by a Kondo model with large spin S>1/2, we analyze the underscreening of the local moment and the effect of anisotropy terms on the relaxation dynamics of the magnetization. Underscreening by single-channel Kondo processes leads to a logarithmically slow relaxation, while finite uniaxial anisotropy causes a saturation of the SMM's magnetization. Additional transverse anisotropy terms induce quantum spin tunneling and a pseudospin-1/2 Kondo effect sensitive to the spin parity.  相似文献   

11.
We propose a Rashba three-terminal double-quantum-dot device to generate a spin-polarized current and manipulate the electron spin in each quantum dot by utilizing the temperature gradient instead of the electric bias voltage. This device possesses a nonresonant tunneling channel and two resonant tunneling channels. The Keldysh nonequilibrium Green's function techniques are employed to determinate the spin-polarized current flowing from the electrodes and the spin accumulation in each quantum dot. We find that their signs and magnitudes are well controllable by the gate voltage or the temperature gradient. This result is attributed to the change in the slope of the transmission probability at the Fermi levels in the low-temperature region. Importantly, an obviously pure spin current can be injected into or extracted from one of the three electrodes by properly choosing the temperature gradient and the gate voltages. Therefore, the device can be used as an ideal thermal generator to produce a pure spin current and manipulate the electron spin in the quantum dot.  相似文献   

12.
We present a dynamical model that reproduces the observed time evolution of the magnetization in diluted magnetic semiconductor films after weak laser excitation. Based on a many-particle expansion of the exact p–d exchange interaction, our approach goes beyond the usual mean-field approximation. Numerical results demonstrate that the hole spin relaxation plays a crucial role for explaining the ultrafast demagnetization processes observed experimentally. The influence of the laser power on the magnetization dynamics is also investigated.  相似文献   

13.
The bias stress effect in pentacene organic thin-film transistors has been investigated. The transistors utilize a thin gate dielectric based on an organic self-assembled monolayer and thus can be operated at low voltages. The bias stress-induced threshold voltage shift has been analyzed for different drain-source voltages. By fitting the time-dependent threshold voltage shift to a stretched exponential function, both the maximum (equilibrium) threshold voltage shift and the time constant of the threshold voltage shift were determined for each drain-source voltage. It was found that both the equilibrium threshold voltage shift and the time constant decrease significantly with increasing drain-source voltage. This suggests that when a drain-source voltage is applied to the transistor during gate bias stress, the tilting of the HOMO and LUMO bands along the channel creates a pathway for the fast release of trapped carriers.  相似文献   

14.
Off-resonance rotating frame technique offers a novel tool to explore the dynamics of paramagnetic agents at high magnetic fields (B0 > 3T). Based on the effect of paramagnetic relaxation enhancement in the off-resonance rotating frame, a new method is described here for determining the dynamics of paramagnetic ion chelates from the residual z-magnetizations of water protons. In this method, the dynamics of the chelates are identified by the difference magnetization profiles, which are the subtraction of the residual z-magnetization as a function of frequency offset obtained at two sets of RF amplitude omega(1) and pulse duration tau. The choices of omega(1) and tau are guided by a 2-D magnetization map that is created numerically by plotting the residual z-magnetization as a function of effective field angle theta and off-resonance pulse duration tau. From the region of magnetization map that is the most sensitive to the alteration of the paramagnetic relaxation enhancement efficiency R(1rho)/R1, the ratio of the off-resonance rotating frame relaxation rate constant R(1rho) verse the laboratory frame relaxation rate constant R(1), three types of difference magnetization profiles can be generated. The magnetization map and the difference magnetization profiles are correlated with the rotational correlation time tauR of Gd-DTPA through numerical simulations, and further validated by the experimental data for a series of macromolecule conjugated Gd-DTPA in aqueous solutions. Effects of hydration water number q, diffusion coefficient D, magnetic field strength B0 and multiple rotational correlation times are explored with the simulations of the magnetization map. This method not only provides a simple and reliable approach to determine the dynamics of paramagnetic labeling of molecular/cellular events at high magnetic fields, but also a new strategy for spectral editing in NMR/MRI based on the dynamics of paramagnetic labeling in vivo.  相似文献   

15.
Wei-Min Jiang 《中国物理 B》2022,31(6):66801-066801
High mobility quasi two-dimensional electron gas (2DEG) found at the CaZrO3/SrTiO3 nonpolar heterointerface is attractive and provides a platform for the development of functional devices and nanoelectronics. Here we report that the carrier density and mobility at low temperature can be tuned by gate voltage at the CaZrO3/SrTiO3 interface. Furthermore, the magnitude of Rashba spin-orbit interaction can be modulated and increases with the gate voltage. Remarkably, the diffusion constant and the spin-orbit relaxation time can be strongly tuned by gate voltage. The diffusion constant increases by a factor of ~ 19.98 and the relaxation time is reduced by a factor of over three orders of magnitude while the gate voltage is swept from -50 V to 100 V. These findings not only lay a foundation for further understanding the underlying mechanism of Rashba spin-orbit coupling, but also have great significance in developing various oxide functional devices.  相似文献   

16.
The structural and magnetic properties and spin dynamics of dextran coated and uncoated γ-Fe(2)O(3) (maghemite) nanoparticles have been investigated using high resolution transmission electron microscopy (HRTEM), (57)Fe nuclear magnetic resonance (NMR), M?ssbauer spectroscopy and dc magnetization measurements. The HRTEM observations indicated a well-crystallized system of ellipsoid-shaped nanoparticles, with an average size of 10 nm. The combined M?ssbauer and magnetic study suggested the existence of significant interparticle interactions not only in the uncoated but also in the dextran coated nanoparticle assemblies. The zero-field NMR spectra of the nanoparticles at low temperatures are very similar to those of the bulk material, indicating the same hyperfine field values at saturation in accord with the performed M?ssbauer measurements. The T(2) NMR spin-spin relaxation time of the nanoparticles has also been measured as a function of temperature and found to be two orders of magnitude shorter than that of the bulk material. It is shown that the thermal fluctuations in the longitudinal magnetization of the nanoparticles in the low temperature limit may account for the shortening and the temperature dependence of the T(2) relaxation time. Thus, the low temperature NMR results are in accord with the mechanism of collective magnetic excitations, due to the precession of the magnetization around the easy direction of the magnetization at an energy minimum, a mechanism originally proposed to interpret M?ssbauer experiments in magnetic nanoparticles. The effect of the surface spins on the NMR relaxation mechanisms is also discussed.  相似文献   

17.
The rotational Brownian motion of magnetized tri-axial ellipsoidal particles (orthotropic particles) suspended in a Newtonian fluid, in the dilute suspension limit, under applied d.c. and a.c. magnetic fields was studied using rotational Brownian dynamics simulations. The algorithm describing the change in the suspension magnetization was obtained from the stochastic angular momentum equation using the fluctuation-dissipation theorem and a quaternion formulation of orientation space. Simulation results are in agreement with the Langevin function for equilibrium magnetization and with single-exponential relaxation from equilibrium at small fields using Perrin's effective relaxation time. Dynamic susceptibilities for ellipsoidal particles of different aspect ratios were obtained from the response to oscillating magnetic fields of different frequencies and described by Debye's model for the complex susceptibility using Perrin's effective relaxation time. Simulations at high equilibrium and probe fields indicate that Perrin's effective relaxation time continues to describe relaxation from equilibrium and response to oscillating fields even beyond the small field limit.  相似文献   

18.
We report the characterization of individual carbon nanotube and Si nanowire field-effect transistors through high-speed scanning photocurrent microscopy with a scanning speed of 1 frame/s and a photocurrent sensitivity of less than 1 pA. This enables us to record photocurrent images that are free from hysteresis effects that modify the field configurations applied by the gate bias voltage. We can clearly resolve the photocurrent signals with polarity inversion near the metallic contacts under gate bias conditions which cause severe hysteresis effects in the nanowire devices. We also studied the dynamics of the hysteresis effects for different gate bias configurations. This high-speed photocurrent imaging technique is particularly useful for obtaining two-dimensional, localized optoelectronic characteristics and their correlation with overall device performance without encountering undesired dynamic responses.  相似文献   

19.
The dynamical behavior of magnetic tunnel junctions (MTJs) was investigated by varying the magnetic field sweep rate from 0.01 mT/s to 10 T/s in a magneto optical Kerr effect set-up. The bias fields of the pinned and free ferromagnetic electrodes were found to drastically decrease above a field sweep rate of 1 T/s. This decrease in the bias fields coincides with a change in the magnetization reversal process from domain wall motion at low-field sweep rates to domain nucleation at high-field sweep rates. The nucleation of inverse domains in the ferromagnetic layer changes the interfacial spin structure of the antiferromagnetic layer and therefore the magnitude of the exchange bias effect. Furthermore, the nucleation of domains induces a discontinuous magnetic charge density at the tunnel barrier interfaces and this reduces the interlayer coupling between the two ferromagnetic electrodes of the MTJ.  相似文献   

20.
李俊  周帆  张建华  蒋雪茵  张志林 《发光学报》2012,33(11):1258-1263
制备了基于反应溅射SiOx绝缘层的InGaZnO-TFT,并系统地研究了InGaZnO-TFT在白光照射下的稳定性,主要涉及到光照、负偏压、正偏压、光照负偏压和光照正偏压5种情况。结果表明,器件在光照和负偏压光照下的阈值偏移较大,而在正偏压光照情况下的阈值偏移几乎可以忽略。采用C-V方法证明阈值电压漂移是源于绝缘层/有源层附近及界面处的缺陷。另外,采用指数模式计算了缺陷态的弛豫时间。本研究的目的就是揭示InGaZnO-TFT在白光照射和偏压下的不稳定的原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号