首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
王建辉  熊双泉  何济洲  刘江涛 《物理学报》2012,61(8):80509-080509
建立了以一维谐振子势阱中的单粒子为工质的量子热机模型.当势阱壁宽度和粒子的量子态缓慢改变时, 该热机类似于经典卡诺热机对外做功.假设势阱壁移动速度非常缓慢并且考虑热漏, 推导出量子热机循环的输出功率和效率等重要性能参数的一般表达式.通过优化分析, 获得了热机循环中各主要性能参数的最佳优化值和优化区间.  相似文献   

2.
A model of an irreversible quantum Carnot heat engine with heat resistance, internal irreversibility and heat leakage and many non-interacting harmonic oscillators is established in this paper. Based on the quantum master equation and semi-group approach, equations of some important performance parameters, such as power output, efficiency, exergy loss rate and ecological function for the irreversible quantum Carnot heat engine are derived. The optimal ecological performance of the heat engine in the classical limit is analyzed with numerical examples. Effects of internal irreversibility and heat leakage on the ecological performance are discussed. A performance comparison of the quantum heat engine under maximum ecological function and maximum power conditions is also performed.  相似文献   

3.
We propose a quantum-mechanical Brayton engine model that works between two superposed states, employing a single particle confined in an arbitrary power-law trap as the working substance. Applying the superposition principle, we obtain the explicit expressions of the power and efficiency, and find that the efficiency at maximum power is bounded from above by the function:η+ =θ/(θ+ 1), with being a potential-dependent exponent.  相似文献   

4.
We present a theoretical and numerical analysis of a quantum system that is capable of functioning as a heat engine. This system could be realized experimentally using cold bosonic atoms confined to a double well potential that is created by splitting a harmonic trap with a focused laser. The system shows thermalization, and can model a reversible heat engine cycle. This is the first demonstration of the operation of a heat engine with a finite quantum heat bath.  相似文献   

5.
汪浩  吴国兴 《中国物理 B》2012,21(1):10505-010505
An irreversible cycle model of the quantum Bose Brayton engine is established, in which finite-time processes and irreversibilities in two adiabatic processes are taken into account. Based on the model, expressions for the power output and the efficiency are derived. By using a numerical computation, the optimal relationship between the power output and the efficiency of an irreversible Bose Brayton engine is obtained. The optimal regions of the power output and the efficiency are determined. It is found that the influences of the irreversibility and the quantum degeneracy on the main performance parameters of the Bose Brayton engine are remarkable. The results obtained in the present paper can provide some new theoretical information for the optimal design and the performance improvement of a real Brayton engine.  相似文献   

6.
The performance of a two-state quantum engine under different conditions is analyzed.It is shown that the efficiency of the quantum engine can be enhanced by superposing the eigenstates at the beginning of the cycle.By employing the finite-time movement of the potential wall,the power output of the quantum engine as well as the efficiency at the maximum power output(EMP) can be obtained.A generalized potential is adopted to describe a class of two-level quantum engines in a unified way.The results obtained show clearly that the performances of these engines depend on the external potential,the geometric configuration of the quantum engines,and the superposition effect.Moreover,it is found that the superposition effect will enlarge the optimally operating region of quantum engines.  相似文献   

7.
Xian-Zhi Wang 《Physica A》2011,390(21-22):3693-3696
In 1975, Curzon and Ahlborn [2] showed that the efficiency of the finite-time Carnot cycle at maximum power is universal. This raises the issue of universality of the efficiency at maximum power. In 2005, Van den Broeck [3] demonstrated that in the linear regime, the efficiency of a steady-state heat engine at maximum power is universal. Further studies indicated that the values of the linear and quadratic coefficients of the efficiency at maximum power are universal for several strong coupling steady-state models and for an overdamped Brownian particle in a time-dependent harmonic potential [M. Esposito, K. Lindenberg, C. Van den Broeck, Phys. Rev. Lett. 102 (2009) 130602]. In this paper, we demonstrate that in the linear regime, the efficiency of an unsteady-state heat engine at maximum instantaneous power is universal.  相似文献   

8.
The quantum effect plays an important role in quantum thermodynamics, and recently the application of an indefinite causal order to quantum thermodynamics has attracted much attention. Based on two trapped ions, we propose a scheme to add an indefinite causal order to the isochoric cooling stroke of an Otto engine through reservoir engineering. Then, we observe that the quasi-static efficiency of this heat engine is far beyond the efficiency of a normal Otto heat engine and may reach one. When the power is its maximum, the efficiency is also much higher than that of a normal Otto heat engine. This enhancement may originate from the non-equilibrium of the reservoir and the measurement on the control qubit.  相似文献   

9.
The efficiency of macroscopic heat engines is restricted by the second law of thermodynamics. They can reach at most the efficiency of a Carnot engine. In contrast, heat currents in mesoscopic heat engines show fluctuations. Thus, there is a small probability that a mesoscopic heat engine exceeds Carnot's maximum value during a short measurement time. We illustrate this effect using a quantum point contact as a heat engine. When a temperature difference is applied to a quantum point contact, the system may be utilized as a source of electrical power under steady state conditions. We first discuss the optimal working point of such a heat engine that maximizes the generated electrical power and subsequently calculate the statistics for deviations of the efficiency from its most likely value. We find that deviations surpassing the Carnot limit are possible, but unlikely.  相似文献   

10.
The efficiency of macroscopic heat engines is restricted by the second law of thermodynamics. They can reach at most the efficiency of a Carnot engine. In contrast, heat currents in mesoscopic heat engines show fluctuations. Thus, there is a small probability that a mesoscopic heat engine exceeds Carnot's maximum value during a short measurement time. We illustrate this effect using a quantum point contact as a heat engine. When a temperature difference is applied to a quantum point contact, the system may be utilized as a source of electrical power under steady state conditions. We first discuss the optimal working point of such a heat engine that maximizes the generated electrical power and subsequently calculate the statistics for deviations of the efficiency from its most likely value. We find that deviations surpassing the Carnot limit are possible, but unlikely.  相似文献   

11.
We propose a new model of the three-terminal quantum dot hybrid thermoelectric heat engine in which the electrons transfer between two electronic terminals at different temperatures and chemical potentials through two coupled single-level quantum dots. Based on master equation we derive the expressions for the output power and the efficiency. The working region of the hybrid heat engine is determined according to the first and second law of thermodynamics. The performance characteristic curves are plotted and the optimal performance parameters are obtained. Finally, the influence of the non-radiative effect on the optimal performance parameters is discussed in detail.  相似文献   

12.
Bo Xiao  Renfu Li 《Physics letters. A》2018,382(42-43):3051-3057
We investigate the finite time performance of reciprocating quantum Otto heat engine coupled to squeezed hot reservoir. We emphasize the converged limit cycle where each stroke is performed in finite time. To fully exploit the quantum availability provided by the squeezed bath, an optimal frequency protocol in the work extraction stroke is explicitly proposed. The power output is optimized with respect to the hot and cold isochore times. Thermodynamic analysis shows that for a wide range of squeezing parameters, efficiency at maximum power exceeds the generalized Curzon–Ahlborn efficiency defined by the effective temperature of the squeezed bath.  相似文献   

13.
We perform a molecular dynamics computer simulation of a heat engine model to study how the engine size difference affects its performance. Upon tactically increasing the size of the model anisotropically, we determine that there exists an optimum size at which the model attains the maximum power for the shortest working period. This optimum size locates between the ballistic heat transport region and the diffusive heat transport one. We also study the size dependence of the efficiency at the maximum power. Interestingly, we find that the efficiency at the maximum power around the optimum size attains a value that has been proposed as a universal upper bound, and it even begins to exceed the bound as the size further increases. We explain this behavior of the efficiency at maximum power by using a linear response theory for the heat engine operating under a finite working period, which naturally extends the low-dissipation Carnot cycle model [M. Esposito, R. Kawai, K. Lindenberg, C. Van den Broeck, Phys. Rev. Lett. 105, 150603 (2010)]. The theory also shows that the efficiency at the maximum power under an extreme condition may reach the Carnot efficiency in principle.  相似文献   

14.
We propose a model for a three-terminal quantum well heat engine with heat leakage. According to the Landauer formula, the expressions for the charge current, the heat current, the power output and the efficiency are derived in the linear-response regime. The curves of the power output and the efficiency versus the positions of energy levels and the bias voltage are plotted by numerical calculation. Moreover, we obtain the maximum power output and the corresponding efficiency, and analyze the influence of the heat leakage factor, the positions of energy levels and the bias voltage on these performance parameters.  相似文献   

15.
A cycle model of an irreversible heat engine working with harmonic systems is established in this paper. Based on the equation of motion of an operator in the Heisenberg picture and semi-group approach, the first law of thermodynamics for a harmonic system and the time evolution of the system are obtained. The general expressions for several important parameters, such as the work, efficiency, power output, and rate of entropy production are derived. By means of numerical analysis, the optimally operating regions and the optimal values of performance parameters of the cycle are determined under the condition of maximum power output. At last, some special cases, such as high temperature limit and frictionless case, are dis-cussed in brief.  相似文献   

16.
涂展春 《中国物理 B》2012,21(2):20513-020513
This review reports several key advances on the theoretical investigations of efficiency at maximum power of heat engines in the past five years. The analytical results of efficiency at maximum power for the Curzon-Ahlborn heat engine, the stochastic heat engine constructed from a Brownian particle, and Feynman's ratchet as a heat engine are presented. It is found that: the efficiency at maximum power exhibits universal behavior at small relative temperature differences; the lower and the upper bounds might exist under quite general conditions; and the problem of efficiency at maximum power comes down to seeking for the minimum irreversible entropy production in each finite-time isothermal process for a given time.  相似文献   

17.
A new model of micro-/nanoscaled heat engines consisting of two thin long tubes with the same length but different sizes of cross section, which are filled up with ideal quantum gases and operated between two heat reservoirs, is put forward. The working fluid of the heat engine cycle goes through four processes, which include two isothermal processes and two isobaric processes with constant longitudinal pressure. General expressions for the power output and efficiency of the cycle are derived, based on the thermodynamic properties of confined ideal quantum gases. The influence of the size effect on the power output and efficiency is discussed. The differences between the heat engines working with the ideal Bose gas and Fermi gas are revealed. The performance of the heat engines operating at weak gas degeneracy and high temperatures is further analyzed. The results obtained are more general and significant than those in the current literature.  相似文献   

18.
A numerical model of a nano-scaled thermoelectric heat engine with InP/InAs/InP trilayer quantum well (QW) is investigated. The expressions of those performance parameters, such as current, power output, and efficiency are expressed. By numerical calculation, the resonant tunneling behavior of electrons in the QW is described, which seems like a very good energy selective electron mechanism for the heat engine. After considering the radiation heat leakage, for fixed layer thicknesses of the QW, the optimum working regions of the heat engine with respect to the chemical potentials and the bias voltage are obtained numerically under the economic criterion. From these results, the power output can be increased by narrowing down the layer thicknesses. In addition, owing to the radiant heat leakage, the efficiency initially increases in the working regions and then decreases when the layer thicknesses increase gradually, from which one can obtain a maximum efficiency by optimizing layer thicknesses of QW. These results calculated here may provide a guide for the optimum designs of tunneling thermoelectric devices.  相似文献   

19.
李倩文  李莹  张荣  卢灿灿  白龙 《物理学报》2017,66(13):130502-130502
热机性能的优化是热力学领域的一个重要问题,而工质与热源之间的传热过程是热机工作时产生不可逆的主要来源.本文在引入功率增益和效率增益两个重要参数的基础上,基于一个简化的Curzon-Ahlborn热机模型并利用合比分比原理,给出了线性与非线性传热过程的热机在任意功率输出时的效率表达式,结合数值计算详细讨论了热机在任意功率输出时的特性.研究表明,参数ξ作为功率增益δP的函数存在两个分支:在第一分支上(不利情形),效率呈现出单调变化特征;在第二分支上(有利情形),效率随着的δP变化是非单调的且有最大值.随着传热指数的增加,热机的工作区域减小,这源于非线性传热过程包含热辐射所致.进一步发现功率-效率关系曲线存在权衡工作点,热机在该点附近工作能够实现最有效的热功转换.研究结果有助于深入理解具有不同传热过程热机的优化执行.  相似文献   

20.
董毕远  徐志君 《物理学报》2018,67(1):10501-010501
基于二维模型,研究了多个子玻色-爱因斯坦凝聚气体在谐振势阱内膨胀叠加形成的量子涡旋现象.运用传播子方法,分析了对称分布的三个子玻色-爱因斯坦凝聚气体膨胀叠加形成宏观量子涡旋的物理过程,得到量子涡旋随时间演化的规律;发现涡旋核分布在谐振势阱内出现振荡;涡旋与反涡旋随时间演化而相互转变,并对这些现象进行了物理分析.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号