首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Vertical InAs/GaAs nanowire (NW) heterostructures with a straight InAs segment have been successfully fabricated on Si (111) substrate by using AlGaAs/GaAs buffer layers coupled with a composition grading InGaAs segment. Both the GaAs and InAs segments are not limited by the misfit strain induced critical diameter. The low growth rate of InAs NWs is attributed to the AlGaAs/GaAs buffer layers which dramatically decrease the adatom diffusion contribution to the InAs NW growth. The crystal structure of InAs NW can be tuned from zincblende to wurtzite by controlling its diameter as well as the length of GaAs NWs. This work helps to open up a road for the integration of high-quality III-V NW heterostructures with Si.  相似文献   

2.
Structural trends in group III-V semiconductor nanowires (NWs) are systematically investigated based on Monte-Carlo simulations using our empirical potential calculations. The calculated NW stacking sequences for the selective area growth demonstrate that the averaged periodicity between wurtzite segments, which is independent of the NW size, decreases with increasing ionicity of semiconductors fi. It is also found that the periodicity is affected by the nucleus size of NWs: The calculated periodicity in InP (InAs) NWs with the nucleus size consisting of ∼ 10 atoms are 0.76 (0.86) nm, reasonably consistent with the experimentally reported one. On the other hand, the nucleus size to reproduce the experimentally reported periodicity in GaAs NWs is estimated to be more than 70 atoms. These results thus imply that the nucleus size as well as fi is of importance in determining the averaged periodicity between wurtzite segments.  相似文献   

3.
The interaction between substitutional and interstitial donors and single or double acceptors in Si, GaAs, InP, and InAs has been studied by perturbed angular correlation spectroscopy (PAC). For the case of Si, complex formation between substitutional donors (As, P) and different radioactive acceptors (111In, 111Cd, 117Cd) has been observed. The formation of Cd–hydrogen pairs using either 111Cd or 117Cd is discussed for GaAs, InP, and InAs. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Si nanowires (NWs), with diameters of about 800 nm and lengths of about 10 ??m, previously synthesized by the VLS method with gold catalyst, were carburized at 1,100 °C under methane for conversion into SiC nanostructures. These experiments have shown that Si NWs have been transformed into SiC nanotubes (NTs) with approximately the same sizes. Nanotubes?? sidewall thickness varies from 20 to 150 nm depending on the NTs?? height. These SiC nanotubes are hexagonal in shape and polycrystalline. A model of growth based on the out-diffusion of Si through the SiC layer was proposed to explain the transformation from Si nanowires to SiC nanotubes. This model was completed with thermodynamic calculations on the Si?CH2?CCH4?CO2 system and with results from complementary experiment using propane precursor. Routes for obtaining crystalline SiC NTs using this reaction are proposed.  相似文献   

5.
We investigated the stress evolution during molecular-beam epitaxy of bilayer InAs/GaAs(001) quantum dot (QD) structures in real time and with sub-monolayer precision using an in-situ cantilever beam setup. During growth of the InAs at 470 °C a stress of 5.1 GPa develops in the wetting layer, in good agreement with the theoretical misfit stress. At a critical thickness of 1.5 monolayers the strain is relieved by the QD formation. In the case of InAs/GaAs bilayer structures, the second InAs layer grows identical to the first for GaAs spacer thicknesses exceeding ∼13 nm. For thinner spacers the critical thickness for the 2D/3D transition in the second layer decreases. The stress of the second InAs layer does not reach the value of the first, indicating that InAs QDs grow on partially strained areas due to the strain field of the previous InAs layer. PACS 68.35.-p; 68.35.Gy; 68.65.Hb; 81.07.Ta; 81.10.Aj  相似文献   

6.
Mn‐assisted molecular beam epitaxy is used for the growth of (In,Mn)As nanowires (NWs) on GaAs(111)B. The transmission electron microscopy measurements revealed that despite the relatively high growth temperature regime this technique can be used to obtain (In,Mn)As NWs with high crystalline quality without any crystal defects, such as dislocations, stacking faults or precipitates inside the investigated NWs or on their side‐walls, although the growth processes of NWs were accompanied by the formation of MnAs precipitates between the NWs at the interface of the wetting layer. The results obtained are of importance for the realization of new spintronic nanostructured materials. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

7.
We report optimized photoluminescence of ZnSe nanowires grown by molecular beam epitaxy, obtained by lowering the growth temperature down to 300 °C. The low‐temperature growth method has been developed using Si(111) and GaAs(111)B substrates. On the latter, vertical oriented blue‐emitting nanowires have been obtained. The growth mecha‐ nism is discussed with the help of in‐situ and ex‐situ electronic and structural measurements. We also report strong blue luminescence from ZnSe nanowires grown on ITO‐coated glasses, demonstrating that ZnSe nanowires are optimal candidates for transparent optoelectronics. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The InAs quantum structures were formed in silicon by sequential ion implantation and subsequent thermal annealing. Two kinds of crystalline InAs nanostructures were successfully synthesized: nanodots (NDs) and nanopyramids (NPs). The peaks at 215 and 235 cm?1, corresponding to the transverse optical (TO) and longitudinal optical (LO) InAs single-phonon modes, respectively, are clearly visible in the Raman spectra. Moreover, the PL band at around 1.3 µm, due to light emission from InAs NDs with an average diameter 7±2 nm, was observed. The InAs NPs were found only in samples annealed for 20 ms at temperatures ranging from 1000 up to 1200°C. The crystallinity and pyramidal shape of InAs quantum structures were confirmed by HRTEM and XRD techniques. The average size of the NPs is 50 nm base and 50 nm height, and they are oriented parallel to the Si (001) planes. The lattice parameter of the NPs increases from 6.051 to 6.055 Å with the annealing temperature increasing from 1100 to 1200°C, due to lattice relaxation. Energy dispersive spectroscopy (EDS) shows almost stoichiometric composition of the InAs NPs.  相似文献   

9.
InAs quantum dots (QDs) were grown on InP substrates by metalorganic chemical vapor deposition. The width and height of the dots were 50 and 5.8 nm, respectively on the average and an areal density of 3.0×1010 cm−2 was observed by atomic force microscopy before the capping process. The influences of GaAs, In0.53Ga0.47As, and InP capping layers (5–10 ML thickness) on the InAs/InP QDs were studied. Insertion of a thin GaAs capping layer on the QDs led to a blue shift of up to 146 meV of the photoluminescence (PL) peak and an InGaAs capping layer on the QDs led to a red shift of 64 meV relative to the case when a conventional InP capping layer was used. We were able to tune the emission wavelength of the InAs QDs from 1.43 to 1.89 μm by using the GaAs and InGaAs capping layers. In addition, the full-width at half-maximum of the PL peak decreased from 79 to 26 meV by inserting a 7.5 ML GaAs layer. It is believed that this technique is useful in tailoring the optical properties of the InAs QDs at mid-infrared regime.  相似文献   

10.
We report a comparison of electric-field gradients (EFGs) measured at the group-III sites on epitaxially-grown surfaces of 2×2-reconstructed GaAs and InAs crystals. For this purpose, we used 111In→111Cd perturbed-angular-correlation (PAC) spectroscopy. Sharp spectral lines characterize the perturbation functions corresponding to both surfaces. On GaAs surface, we observe only one well-defined nuclear electric-quadrupole interaction (NQI); and on the InAs surface, we observe a primary and a secondary NQI. Very similar but experimentally-distinguishable values of the EFG-parameters characterize the primary interactions corresponding to the GaAs and InAs surfaces. Specifically, for the GaAs and InAs surfaces, ω Q =28.0±0.2 Mrad s−1 and η=0.43±0.02 and ω Q =28.8±0.2 Mrad s−1 and η=0.39±0.02, and the angles between EFG z-axis and the (111) direction are 65°±3° and β=53°±3°, respectively. These unexpected results indicate that the so-called lattice contribution to the EFG is not significant. Moreover, for the primary NQIs on both surfaces, the similar parameter values demonstrate that chemical differences between the 111In probe and the indigenous Ga surface atoms cause no large quantitative effects. This information indicates that impurity probes and PAC spectroscopy can be used effectively to investigate III–V surfaces. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

11.
The surface reconstructions on InAs(111)A wetting layer grown on GaAs substrate are investigated by our ab initio-based approach incorporating the chemical potentials of In atom and As molecules in the vapor phase as functions of temperature and beam equivalent pressure. The calculated results imply that the most stable surface structure of InAs with/without lattice constraint from the substrate is the In-vacancy surface under conventional growth conditions. The In-vacancy surface is dramatically stabilized on the wetting layer, since the atoms around the In-vacancy are easily displaced to effectively lower the strain energy due to the lattice constraint from the GaAs substrate. Distinctive feature between InAs(111)A surfaces with and without lattice constraint is found in the stable adsorption sites. In adatoms favor the In-vacancy site on the InAs without lattice constraint in contrast to the interstitial sites on the InAs wetting layer. These results suggest that the surface structure and adsorption-desorption behavior on the wetting layer are crucial for investigating the growth processes of nanostructures such as quantum dots and stacking fault tetrahedrons.  相似文献   

12.
We report on the growth of horizontal and straight Si nanowires (NWs) on Si substrate using sputter deposition of the Si layer followed by thermal annealing at 1000 °C and above. The growth of horizontal NWs was achieved without the use of any metal catalyst. Uniform cylindrical shaped Si NWs with a diameter in the range of 50–60 nm and a length of up to 8 μm were synthesized. The as-synthesized Si NWs have a Si core covered with a thin amorphous native oxide layer, as revealed by high resolution transmission electron microscopy. The aspect ratio of these Si NWs is in the range of 100–160. Micro-Raman studies on the NWs reveal a tensile strain on the Si NW core due to presence of a thin oxide layer. From the Raman shift, we calculate a strain of 1.0% for the catalyst free Si NW. FTIR analysis indicates the presence of interstitial oxygen atoms in the Si NWs, as expected from oxidation of Si NWs. For comparison, metal catalyst (Au) assisted Si NWs have also been grown on Si(100) substrate by a similar process. These NWs have a similar diameter and a marginally higher aspect ratio. A model for the growth mechanism of horizontal NWs is presented. This represents one of the first examples of direct horizontal growth of straight Si NWs on commonly used Si substrates suitable for nanoelectronic device fabrication.  相似文献   

13.
By a combination of chemical etching, atomic layer deposition (ALD) and galvanic deposition it became possible to produce Ni nanowires (NWs) with ultra‐high aspect ratio (~1000), embedded in a semi‐insulating, piezoelectric, single‐crystalline InP matrix. This Letter discusses the structural and magnetic properties of these Ni NWs. They are crystalline with a preferential growth direction of the grains in 〈111〉. For Hz , they show a very narrow hysteresis loop with a low coercivity (about 100 Oe) and a very low remanence squareness S of 0.08. So the combination of piezoelectric InP and magnetostrictive Ni forms a very promising multiferroic composite. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Magnetic and electronic structure calculations are carried out for hypothetical zinc-blende (zb) phase of FeX (X=P, As, Sb) by using the full-potential linearized augmented plane wave (FLAPW) method. For zb FeSb, the total energy has been calculated as a function of lattice constant in ferromagnetic (FM) and antiferromagnetic (AFM) states. We found that the ground state of zb FeSb is very stable with respect to compression and expansion of the unit cell. The magnetic moment of zb FeSb in the AFM state is increasing with the lattice constant. The magnetic and electronic structures calculations of FeAs (FeP) are carried out for the lattice constants of GaAs (GaP), InAs (InP), and Si. Our finding shows that AFM is the ground state for all of our calculated zb FeX compounds and do not belong to the class of zb half metallic ferromagnets.  相似文献   

15.
The growth of InAs quantum dots (QDs) on InP (1 0 0) and (3 1 1)A substrates by chemical-beam epitaxy is studied. The InAs QDs are embedded in a GaInAsP layer lattice-matched to InP. We demonstrate an effective way to continuously tune the emission wavelength of InAs QDs grown on InP (1 0 0). With an ultra-thin GaAs layer inserted between the QD layer and the GaInAsP buffer, the peak wavelength from the InAs QDs can be continuously tuned from above 1.6 μm down to 1.5 μm at room temperature. The major role of the thin GaAs layer is to greatly suppress the As/P exchange during the deposition of InAs and subsequent growth interruption under arsenic flux, as well as to consume the segregated In layer floating on the GaInAsP buffer. Moreover, it is found that InP (3 1 1)A substrates are particularly promising for formation of uniform InAs QDs. The growth of InAs on InP (3 1 1)A consists of two stages: nanowire formation due to strain-driven growth instability and subsequent QD formation on top of the wires. The excellent size uniformity of the InAs QDs obtained on InP (3 1 1)A manifests itself in the narrow photoluminescence line width of 26 meV at 4.8 K.  相似文献   

16.
Extremely low density InAs quantum dots (QDs) are grown by molecular beam droplet epitaxy. The gallium deposition amount is optimized to saturate exactly the excess arsenic atoms present on the GaAs substrate surface during growth, and low density InAs/GaAs QDs (4× 10^6 cm^-2) are formed by depositing 0.65 monolayers (MLs) of indium. This is much less than the critical deposition thickness (1.7 ML), which is necessary to form InAs/GaAs QDs with the conventional Stranski-Krastanov growth mode. The narrow photoluminescence linewidth of about 24 meV is insensitive to cryostat temperatures from IO K to 250K. All measurements indicate that there is no wetting layer connecting the QDs.  相似文献   

17.
Pure zinc blende structure GaAs/AlGaAs axial heterostructure nanowires (NWs) are grown by metal organic chemical vapor deposition on GaAs(111) B substrates using Au-catalyzed vapor-liquid-solid mechanism.Al adatom enhances the influence of diameters on NWs growth rate.NWs are grown mainly through the contributions from the direct impingement of the precursors onto the alloy droplets and not so much from adatom diffusion.The results indicate that the droplet acts as a catalyst rather than an adatom collector.  相似文献   

18.
Aligned straight silica nanowires (NWs) have been synthesized on Si wafer by thermal evaporation of mixed powders of zinc carbonate hydroxide and graphite at 1100 °C and condensation on Si substrate without using any catalyst. The straight silica NWs have diameters ranging from 50 to 100 nm, and lengths of several micrometers, with cone-shaped tips at their ends. High deposition temperature and relatively high SiOx vapor concentration near the growth substrate would be beneficial to the formation of the aligned straight silica NWs. Different morphologies of silica nanostructures have also been obtained by varying the deposition temperature and the vapor concentration of the SiOx molecules. Room temperature photoluminescence measurements on the oriented silica NWs show that two green emission bands at 510 and 560 nm, respectively, revealing that the aligned straight silica NWs might have potential applications in the future optoelectronic devices.  相似文献   

19.
The formation of heteroepitaxial structures with InAs nanoclusters in an Si matrix during molecular-beam epitaxy and variations in the parameters of these structures due to thermal annealing are investigated by reflection high-energy electron diffraction (RHEED), medium-energy ion scattering (MEIS), and scanning electron microscopy (SEM). It is demonstrated that the deposition of InAs onto the Si(100) surface at certain temperatures brings about the formation of tetrahedral nanopyramids with {111} orientation of the lateral faces. It is revealed that InAs nanoislands can be epitaxially overgrown with silicon, which leads to gradual smoothing of the three-dimensional relief. After annealing under vacuum, the Si/InAs/Si(100) structures are stable at tem-peratures up to 700°C.  相似文献   

20.
Novel micrometer-sized Si-Sn-O structures with SiO2 nanowires (SiONWs) growing from their surfaces have been achieved at about 980 °C on Si (111) wafer catalyzed by Sn vapor generated from Sn powders. The Si wafer itself served as a silicon source in the reaction. The micrometer-sized structures, with diameters of several micrometers to several tens of micrometers consisted of Sn, Si and O. The amorphous SiONWs growing from the surface of the micrometer-sized structures were smooth, with diameters about 120 nm and with a composition close to that of SiO2. The growth mechanism of these novel structures is discussed briefly. Received: 30 July 2002 / Accepted: 18 September 2002 / Published online: 4 December 2002 RID="*" ID="*"Corresponding author. Fax: +86-551/5591434, E-mail: shsuncn@hotmail.com  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号