首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Abstract The coupled effects of vacancy clusters (VCs), temperature, wire size, and geometry on the mechanical and fracture behaviors of defective silicon nanowires (Si NWs) were investigated using molecular dynamics modeling with Tersoff potential. The formation energies (E v ) of a monovacancy (3.933 eV) and a tetrahedron vacancy (10.189 eV) obtained in this study agree well with experimental results and ab initio calculation. Simulation results show that the slip deformations of defective Si NWs are triggered at the wire’s surface and edge due to the number of dangling bonds on the wire’s surface being much greater than that inside a vacancy defect. VC defects barely affect to the value of Young’s modulus, but substantially weaken the ultimate strength of wires with a small cross-sectional size. With decreasing wire size and increasing operation temperature, significant reductions in Young’s modulus and fracture strength were observed. The average Young’s modulus for square NWs was about 3.7 % higher than that of wires with a circular shape due to the surface facet effect. A brittle-to-ductile transition (BDT) occurred for [001]-oriented Si NWs with a lateral size≤5.43 nm and an operation temperature T≥300 K.  相似文献   

2.
Effects of substrate on crystallinity, surface morphology, and luminescence properties of radio frequency sputtered zinc oxide (ZnO) thin films were investigated. A variety of materials such as Si (100), Si (111), Al2O3, quartz, and silicon carbide (SiC) wafers were examined as substrates for deposition of ZnO thin films. The results showed smooth and uniform growth of c-axis orientation films. The thickness of the layers was about 50 nm. The average grain sizes of films were about 10, 13, and 12 nm for Si (111), quartz, and SiC samples, respectively. The deposited film on Al2O3 showed the largest grain size, about 500 nm. Grazing incidence x-ray diffraction patterns of the samples revealed that sputtered layers on Al2O3 and quartz had better crystallinity with higher peak at (002) orientation compared to Si and SiC substrates. Moreover, the Al2O3 sample exhibited a weak peak at position of (100) planes of ZnO too. The photoluminescence spectra of the samples showed a typical luminescence behavior with a broad UV band, including a main peak at around 388 nm and a weak shoulder peak at around 381 nm, corresponding with bound excitonic recombination and free excitonic recombination, respectively. The luminescence peak revealed that the intensity of UV emission is not necessarily dependent on the grain sizes and the micro-structural quality of ZnO films.  相似文献   

3.
We report on the growth of horizontal and straight Si nanowires (NWs) on Si substrate using sputter deposition of the Si layer followed by thermal annealing at 1000 °C and above. The growth of horizontal NWs was achieved without the use of any metal catalyst. Uniform cylindrical shaped Si NWs with a diameter in the range of 50–60 nm and a length of up to 8 μm were synthesized. The as-synthesized Si NWs have a Si core covered with a thin amorphous native oxide layer, as revealed by high resolution transmission electron microscopy. The aspect ratio of these Si NWs is in the range of 100–160. Micro-Raman studies on the NWs reveal a tensile strain on the Si NW core due to presence of a thin oxide layer. From the Raman shift, we calculate a strain of 1.0% for the catalyst free Si NW. FTIR analysis indicates the presence of interstitial oxygen atoms in the Si NWs, as expected from oxidation of Si NWs. For comparison, metal catalyst (Au) assisted Si NWs have also been grown on Si(100) substrate by a similar process. These NWs have a similar diameter and a marginally higher aspect ratio. A model for the growth mechanism of horizontal NWs is presented. This represents one of the first examples of direct horizontal growth of straight Si NWs on commonly used Si substrates suitable for nanoelectronic device fabrication.  相似文献   

4.
In this study, a method was proposed for the preparation of Y-Fe alloy nanowires by PC membrane template-assisted electrodeposition from aqueous solution. Citric acid  acted as complexing agent was used into the solution to fabricate Y-Fe alloy nanowires. The electrolyte solution consisted of 5 g L?1 YCl3, 12.5 g L?1 FeSO·6H2O, different concentrations of citric acid , 25 g L?1 boric acid in deionized water. The energy dispersive spectroscopy (EDS) found that the content of Y in the nanowires can be controlled by citric acid concentration and the current intensity, and the content of Y could reach up to 33.16 wt%. Scanning electron microscopy (SEM), BET specific surface area (BET), and X-ray diffraction (XRD) showed that there was a shift in the structure of nanowires from semicrystalline to amorphous due to the change of Y content, and their shapes were approximately 100 nm in diameter and 6 μm in length; the surface areas of nanowires were about 3.97 m2/g. Fourier transform infrared (FTIR) spectroscopy, UV–Vis diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy (XPS) indicated the formation of Y-Fe alloy, Y2Oand Fe2O  existed  in the outer layer of nanowires. The magnetic field applied both parallel and perpendicular to the nanowires by alternating gradient magnetometer (AGM) showed small magnetic anisotropy and low coercivity with easy axis of magnetization perpendicular to the nanowires. In addition, the magneto-optic Kerr effect (MOKE) was investigated, and a Kerr rotation angle of 29 mdeg was obtained.  相似文献   

5.
We report on the growth properties of InAs, InP and GaAs nanowires (NWs) on different lattice mismatched substrates, in particular, on Si(111), during Au‐assisted molecular beam epitaxy (MBE). We show that the critical diameter for the epitaxial growth of dislocation‐free III–V NWs decreases as the lattice mismatch increases and equals 24 nm for InAs NWs on Si(111), 39 nm for InP NWs on Si(111), 44 nm for InAs NWs on GaAs(111)B, and 110 nm for GaAs NWs on Si(111). When the diameters exceed these critical values, the NWs are dislocated or do not grow at all. The corresponding temperature domains for NW growth extend from 320 °C to 340 °C for InAs NWs on Si(111), 330 °C to 360 °C for InP NWs on Si(111), 370 °C to 420 °C for InAs NWs on GaAs(111)B and 380 °C to 540 °C for GaAs NWs on Si(111). Experimental values for critical diameters are compared to the previous findings and are discussed within the frame of a theoretical model. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Undoped and Fe-doped TiO2 nanostructures have been successfully grown on Pt-coated quartz and Si (100) substrates using vapor-liquid-solid (VLS) growth method. The scanning electron microscopy (SEM) image showed that TiO2 grew in nanowires (NWs) with diameters of 200–400 nm and lengths greater than 12 μm. However, the morphology of Fe-doped TiO2 consists of chunk shaped nanoparticles (NPs). The X-ray diffraction analysis for undoped TiO2 NWs clearly showed the formation of tetragonal rutile TiO2, whereas for the Fe-doped TiO2 NPs it showed orthorhombic TiO2 phase and there are no crystalline peaks for iron or iron oxide. The refractive index and extinction coefficient values of undoped and Fe-doped TiO2 nanostructures were derived from the ellipsometric measurements. Enhanced photocatalytic activities were obtained for undoped and Fe-doped TiO2 nanostructures. The obtained results may find potential applications in optical devices and degradation of organic wastes.  相似文献   

7.
Tungsten trioxide (WO3) is a technologically important material for photoelectrochemical (PEC) water-splitting for the solar production of hydrogen fuel from water. For PEC water-splitting, high aspect ratio WO3 nanostructures such as nanowires (NWs) and nanotubes (NTs) are superior to planar WO3 films because they orthogonalize the directions of light absorption (along the long axis) and charge transport (across the short radius), leading to both efficient light absorption and charge carrier collection. However, PEC water-splitting requires the growth of WO3 on delicate transparent conducting oxide (TCO) substrates that cannot tolerate high temperature processing. To date, the large-scale, rapid, economical synthesis of high aspect ratio WO3 nanostructures on these delicate TCO substrates remains a major challenge. Previously, we synthesized WO3 NW arrays by a rapid, atmospheric and scalable flame vapor deposition (FVD) method, in which a flame oxidizes and evaporates tungsten metal to produce tungsten oxide vapors that condense onto a colder substrate in the form of NWs. Nevertheless, at substrate temperatures low enough to ensure the health of the TCO, the growth of WO3 NW arrays was non-uniform and sparse due to limitations of the experimental design. Herein, we significantly improve the FVD design to grow uniform and densely packed WO3 nanostructures on TCO substrates, thereby enabling the application of these WO3 nanostructures to PEC water-splitting. The morphology of the nanostructures varied from densely packed multi-shell NTs and single-shell NTs to NWs as we increased the substrate temperature in the range 530–700 °C. Importantly, the WO3 NTs synthesized by FVD had higher areal number density and longer length than state-of-the-art WO3 NW photoanodes grown by chemical vapor deposition and hydrothermal methods, resulting in stronger light absorption and superior PEC water-splitting performance. Thus, in addition to being scalable, rapid and economical, the FVD method also synthesizes materials of high quality.  相似文献   

8.
We show that the coercivity of electrochemically grown cobalt nanowires (NWs) within the pores of a polycarbonate membrane can be changed to a large extent by tuning their diameters. The face centered cubic crystalline structure of the NWs having diameter in the range of 10 to 200 nm could be retained. Smaller diameter wires (below 30 nm) are found to be single crystalline and oriented in the [110] growth direction, but for higher diameter wires the crystallite size became very small. Magnetization measurements with an applied field parallel to the axis of the NWs show that the nature of the MH loop changes from square to linear as the diameter of the NWs increases. The coercivity was found to be 1700 Oe and 480 Oe at 5 K (1000 Oe and 250 Oe at 300 K) for 10 nm and 100 nm wires, respectively. The observed changes in the nature of the MH loop and in coercivity could be explained following the Stoner–Wohlfarth model and using the fact that the domain size reduces as the diameter of the wires increases.  相似文献   

9.
Aligned straight silica nanowires (NWs) have been synthesized on Si wafer by thermal evaporation of mixed powders of zinc carbonate hydroxide and graphite at 1100 °C and condensation on Si substrate without using any catalyst. The straight silica NWs have diameters ranging from 50 to 100 nm, and lengths of several micrometers, with cone-shaped tips at their ends. High deposition temperature and relatively high SiOx vapor concentration near the growth substrate would be beneficial to the formation of the aligned straight silica NWs. Different morphologies of silica nanostructures have also been obtained by varying the deposition temperature and the vapor concentration of the SiOx molecules. Room temperature photoluminescence measurements on the oriented silica NWs show that two green emission bands at 510 and 560 nm, respectively, revealing that the aligned straight silica NWs might have potential applications in the future optoelectronic devices.  相似文献   

10.
SiC nanowires with fins have been prepared by chemical vapor deposition in a vertical vacuum furnace by using a powder mixture of milled Si and SiO2 and gaseous CH4 as the raw materials. The products were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). These investigations confirm that the nanowires with fins are cubic β-SiC. The diameter of the fins is about 100–120 nm and the diameter of the inner core stems is about 60–70 nm. The formation process of the β-SiC nanowires with fins is analyzed and discussed briefly.  相似文献   

11.
Au-functionalized SnO2 nanotubes were prepared for use as gas sensors using TeO2 nanowires as templates. Transmission electron microscopy revealed tube diameters, tube lengths and tube wall thicknesses ranging from 50 to 200 nm, 5 to 50 μm, and 13 to 18 nm, respectively. The Au-functionalized SnO2 nanotube sensors showed responses of 179–473 % to 1–5 ppm NO2 at 300 °C. These values are much higher than those obtained using bare SnO2 nanotubes synthesized in this study and most other SnO2 one-dimensional nanostructure-based sensors reported in the literature. The NO2 gas sensing mechanism of the Au-functionalized SnO2 nanotube sensors is also discussed.  相似文献   

12.
SiC nanowires with fins have been prepared by chemical vapor deposition in a vertical vacuum furnace by using a powder mixture of milled Si and SiO2 and gaseous CH4 as the raw materials. The products were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). These investigations confirm that the nanowires with fins are cubic β-SiC. The diameter of the fins is about 100–120 nm and the diameter of the inner core stems is about 60–70 nm. The formation process of the β-SiC nanowires with fins is analyzed and discussed briefly.  相似文献   

13.
The ZnO NWs were applied as effective material for the fabrication of ethanol (C2H5OH) and carbon monoxide (CO) gas sensor. The ZnO NWs were grown by thermal evaporation techniques on non-catalytic Si (100) substrates. The average width and length of ZnO NWs was 60 nm and 20 μm, respectively and they were single crystalline in nature. The maximum response was 51.64 at 300 °C for 1000 ppm of CO gas, while 104.23 at 400 °C for 250 ppm of ethanol gas. The response of ZnO NWs was very high for ethanol compared to the CO, whereas the recovery time for ethanol was very poor compare to CO gas. The response of ZnO NWs was about 25 times higher for ethanol compare to CO, at 400 °C for 100 ppm of each gas. The high response for ethanol is related to electron donating effect of ethanol (10e?) which was higher than the CO gas (2e?). The high response of ZnO NWs was attributed to large contacting surface area for electrons, oxygen, target gas molecule, and abundant channels for gas diffusion.  相似文献   

14.
The quantum confinement effect is important in nanoelectronics and optoelectronics applications; however, there is a discrepancy between the theory of quantum confinement, which indicates that band-gap widening occurs only at small sizes, and experimental observations of band-gap widening in large-diameter nanowires (NWs). This paper reports an obvious blue shift of the absorption edge in the UV-visible absorption spectra of SiC NWs with diameters of 50–300 nm. On the basis of quantum confinement theory and high-resolution transmission electron microscopy images of SiC NWs, band-gap widening in SiC NWs with diameters of up to hundreds of nanometers is fully explained; the results could help to explain similar band-gap widening in other NWs with large diameters.  相似文献   

15.
In this work, photovoltaic performance of Ga-doped ZnO thin film/Si NWs heterojunction diodes was investigated. Highly dense and vertically well-aligned Si NW arrays were successfully synthesised on a p-type (1?0?0)-oriented Si wafer through cost-effective metal-assisted chemical etching technique. Ga-doped ZnO thin films were deposited onto Si NWs via radio frequency magnetron sputtering to construct three-dimensional heterostructures. Photovoltaic characteristics of the fabricated diodes were determined with current density (J)–voltage (V) measurements under simulated solar irradiation of AM 1.5 G. The optimal open-circuit voltage, short-circuit current density, fill factor and power conversion efficiency were found to be 0.37 V, 3.30 mA cm?2, 39.00 and 0.62%, respectively. Moreover, photovoltaic diodes exhibited relatively high external quantum efficiency over the broadband wavelengths between 350 and 1100 nm interval of the spectrum. The observed photovoltaic performance in this study clearly indicates that the investigated device structure composed of Ga-doped ZnO thin film/Si NWs heterojunctions could facilitate an alternative pathway for optoelectronic applications in future, and be a promising alternative candidate for high-performance low-cost new-generation photovoltaic diodes.  相似文献   

16.
Silicon/polyaniline-based porous carbon (Si/PANI-AC) composites have been prepared by a three-step method: coating polyaniline on Si particles using in situ polymerization, carbonizing, and further activating by steam. The morphology and structure of Si/PANI-AC composites have been characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Raman spectra, respectively. The content and pore structure of the carbon coating layer in Si/PANI-AC have been measured by thermogravimetric analysis and N2 adsorption-desorption isotherm, respectively. The results indicate some micropores about 1~2 nm in the carbon layer appear during activation and that crystal structure and morphology of Si particles can be retained during preparation. Si/PANI-AC composites exhibit high discharge capacity about 1000 mAh g?1 at 1.5 A g?1; moreover, when the current density returns to 0.2 A g?1, the discharge capacity is still 1692 mAh g?1 and remains 1453 mAh g?1 after 70 cycles. The results indicate that the porous carbon coating layer in composites plays an important role in the improvement of the electrochemical performance of pure Si.  相似文献   

17.
Two kinds of ferromagnetic SiC based nanowires with and without Ni catalyst were successfully synthesized by employing microwave heating method. The comprehensive characterizations and vibrating sample magnetometer (VSM) have been applied to investigate the micro-structures and magnetic properties of as-grown nanowires. For the nanowires synthesized without using Ni catalyst, the diameters and lengths are in the range of 20–60 nm and dozens of micrometers, respectively. Particularly, the results of transmission electron microscopy (TEM) show that the nanowires consist of SiC core and SiOx shell. The SiC/SiOx coaxial nanowires exhibit room-temperature ferromagnetism with saturation magnetization (Ms) of 0.2 emu/g. As to the nanowires obtained using Ni catalyst, the scanning electron microscopy (SEM) results indicate that the Ni catalyzed nanowires have a nano-particle attached on the tip and a uniform diameter of approximately 50 nm. The vapor-liquid-solid (VLS) growth mechanism can be used to explain the formation of the Ni catalyzed nanowires. The detection result of VSM indicates that the Ni catalyzed nanowires possess the paramagnetism and the ferromagnetism, simultaneously. The enhancement of the ferromagnetism, compared with the SiC/SiOx coaxial nanowires, could be attributed to the Ni2Si and NiSi phases.  相似文献   

18.
In this paper, nickel oxides (NiO) and iron (Fe)-doped NiO nanowires (NWs) with the various doping content (from 1 to 9 at%) were synthesized by using SBA-15 templates with the nanocasting method. All samples were synthesized in the same conditions and exhibited the same mesoporous-structures, uniform diameter, and defects. Mesoporous-structures with high surface area created more active sites for the adsorption of oxygen on the surface of all samples, resulting in the smaller surface resistance in air. The impurity energy levels from the donor Fe-doping provided electrons to neutralize the holes of p-type Fe-doped NiO NWs, which greatly enhanced the total resistance. The comparative gas-sensing study between NiO NWs and Fe-doped NiO NWs indicated that the high-valence donor Fe-doping obviously improved the ethanol sensitivity and selectivity for Fe-doped NiO NWs. And Ni0.94Fe0.06O1.03 NWs sensor presented the highest sensitivity of 14.30 toward ethanol gas at 320 °C for the high-valence metal-doping.  相似文献   

19.
Using synchrotron radiation nanoprobe, this work reports on the elemental distribution in single Inx Ga1–xN nanowires (NWs) grown by molecular beam epitaxy directly on Si(111) substrates. Single NWs dispersed on Al covered sapphire were characterized by nano‐X‐ray fluorescence, Raman scattering and photoluminescence spectroscopy. Both Ga and In maps reveal an inhomogeneous axial distribution inside sin‐ gle NWs. The analysis of NWs from the same sample but with different dimensions suggests a decrease of In segregation with the reduction of NW diameter, while Ga distribution seems to remain unaltered. Photoluminescence and Raman scattering measurements carried out on ensembles of NWs exhibit relevant signatures of the compositional disorder. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Size dependence of Young's modulus in ZnO nanowires   总被引:2,自引:0,他引:2  
We report a size dependence of Young's modulus in [0001] oriented ZnO nanowires (NWs) with diameters ranging from 17 to 550 nm for the first time. The measured modulus for NWs with diameters smaller than about 120 nm is increasing dramatically with the decreasing diameters, and is significantly higher than that of the larger ones whose modulus tends to that of bulk ZnO. A core-shell composite NW model in terms of the surface stiffening effect correlated with significant bond length contractions occurred near the {1010} free surfaces (which extend several layers deep into the bulk and fade off slowly) is proposed to explore the origin of the size dependence, and present experimental result is well explained. Furthermore, it is possible to estimate the size-related elastic properties of GaN nanotubes and relative nanostructures by using this model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号