首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   0篇
化学   4篇
力学   10篇
数学   4篇
物理学   13篇
  2019年   4篇
  2018年   1篇
  2015年   3篇
  2014年   3篇
  2013年   1篇
  2012年   4篇
  2011年   3篇
  2009年   4篇
  2008年   1篇
  2007年   3篇
  2006年   1篇
  2004年   1篇
  2000年   2篇
排序方式: 共有31条查询结果,搜索用时 15 毫秒
1.
2.
Extending fixed‐grid time integration schemes for unsteady CFD applications to moving grids, while formally preserving their numerical stability and time accuracy properties, is a nontrivial task. A general computational framework for constructing stability‐preserving ALE extensions of Eulerian multistep time integration schemes can be found in the literature. A complementary framework for designing accuracy‐preserving ALE extensions of such schemes is also available. However, the application of neither of these two computational frameworks to a multistage method such as a Runge–Kutta (RK) scheme is straightforward. Yet, the RK methods are an important family of explicit and implicit schemes for the approximation of solutions of ordinary differential equations in general and a popular one in CFD applications. This paper presents a methodology for filling this gap. It also applies it to the design of ALE extensions of fixed‐grid explicit and implicit second‐order time‐accurate RK (RK2) methods. To this end, it presents the discrete geometric conservation law associated with ALE RK2 schemes and a method for enforcing it. It also proves, in the context of the nonlinear scalar conservation law, that satisfying this discrete geometric conservation law is a necessary and sufficient condition for a proposed ALE extension of an RK2 scheme to preserve on moving grids the nonlinear stability properties of its fixed‐grid counterpart. All theoretical findings reported in this paper are illustrated with the ALE solution of inviscid and viscous unsteady, nonlinear flow problems associated with vibrations of the AGARD Wing 445.6. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
3.
4.
5.
The objective of this study was to examine the vocal symptoms and acoustic changes perceived in the short period after endotracheal intubation, and to find the association between these changes and the endotracheal tube parameters. A total of 35 subjects were included. They were examined preoperatively, and 2 and 24 hours postoperatively. The vocal symptoms of hoarseness, vocal fatigue, loss of voice, throat clearing, globus pharyngeus, throat pain, and the acoustic variables mainly average fundamental frequency, relative average perturbation, shimmer, noise to harmony ratio, voice turbulence index, habitual pitch, and maximum phonation time (MPT) were assessed as such and in relation to the following endotracheal tube parameters: duration of anesthesia, number of intubation attempts, size of the tube, cuff volume, cuff mean pressure, and the emergence. The association between anesthesia parameters with incidence of vocal complaints and changes in acoustic parameters were examined using logistic and linear regression. Vocal fatigue was associated significantly with the increase in cuff volume and the number of intubation attempts. Throat clearing was associated significantly with the increase in cuff mean pressure. Only the increase in habitual pitch was associated significantly with the increase in cuff volume. The acute short-term effect of endotracheal intubation on voice is significant. The most important endotracheal tube parameters that affect the vocal changes are the cuff mean pressure and volume. The laryngeal contribution to these vocal changes seems to be minimal. All vocal symptoms increased significantly except for globus pharyngeus at 2 hours postoperatively. The acoustic parameters did not change significantly except for a decrease in MPT. At 24 hours postoperatively, all vocal symptoms subsided with no significant difference to baseline value. The habitual pitch increased significantly, and the rest of the parameters remained comparable to baseline value.  相似文献   
6.
Due to an increased awareness and significant environmental pressures from various stakeholders, companies have begun to realize the significance of incorporating green practices into their daily activities. This paper proposes a framework using Fuzzy TOPSIS to select green suppliers for a Brazilian electronics company; our framework is built on the criteria of green supply chain management (GSCM) practices. An empirical analysis is made, and the data are collected from a set of 12 available suppliers. We use a fuzzy TOPSIS approach to rank the suppliers, and the results of the proposed framework are compared with the ranks obtained by both the geometric mean and the graded mean methods of fuzzy TOPSIS methodology. Then a Spearman rank correlation coefficient is used to find the statistical difference between the ranks obtained by the three methods. Finally, a sensitivity analysis has been performed to examine the influence of the preferences given by the decision makers for the chosen GSCM practices on the selection of green suppliers. Results indicate that the four dominant criteria are Commitment of senior management to GSCM; Product designs that reduce, reuse, recycle, or reclaim materials, components, or energy; Compliance with legal environmental requirements and auditing programs; and Product designs that avoid or reduce toxic or hazardous material use.  相似文献   
7.
Automation is conquering new fields on a daily basis. Aiming for faster and more reliable products, industrials as well as researchers are oriented into automation. Non-destructive testing as well as defect quantification is not an exception. In fact, decisions with minimum allowable error are sought in real-time when facing any potential defect. In this work, we suggest a comprehensive method based on model order reduction techniques to judge if a structure shall be salvaged. The real-time decision is based on multidimensional parametric simulation, performed offline, using the Proper Generalized Decomposition (PGD). The PGD is a model order reduction technique that allows circumventing the curse of dimensionality by using domain decomposition. Therefore, the 6D simulation illustrated in this paper is performed within a few minutes on a standard laptop. Later on, a stress concentration manifold is built and used online for decision-making. The manifold is validated on a few selected solutions solved analytically using an analytical procedure. The aforementioned procedure is developed, in this paper, to calculate the tangential stress around circular holes of different sizes, in an infinite isotropic plate containing any number of holes and subjected to in-plane pressure loading at the tip of the infinite plate. The procedure is based on determining two Muskhelishvili complex potentials in terms of complex Fourier series, and applying the Schwartz alternating method repeatedly until the boundary conditions on the contour of every hole are satisfied.  相似文献   
8.
Air leakage from the engine compartment of a vehicle comes mainly from the junctions of the vehicle hood and the front end grill, the vehicle wings, the optical and the windshield. The present paper studies the thermal impact of these air leakage zones on the components of the vehicle engine compartment through temperature and heat-flux measurements. The front wheels of the test vehicle are positioned on a dynamometer and driven by the vehicle engine. The engine compartment is instrumented with almost 100 surface and air thermocouples and 20 fluxmeters of normal gradients. Measurements were made for three different thermal operating points. Five leak-sealing configurations are studied.  相似文献   
9.
Highly nonlinear, turbulent, dynamic, fluid-structure interaction problems characterized by large structural displacements and deformations, as well as self-contact and topological changes, are encountered in many applications. For such problems, the Eulerian computational framework, which is often equipped with an embedded (or immersed) boundary method for computational fluid dynamics, is often the most appropriate framework. In many circumstances, it requires the computation of the time-dependent distance from each active mesh vertex of the embedding mesh to the nearest embedded discrete surface. Such circumstances include, for example, modeling turbulence using the Spalart-Allmaras or detached eddy simulation turbulence models and performing adaptive mesh refinement in order to track the boundary layer. Evaluating at each time step the distance to the wall is computationally prohibitive, particularly in the context of explicit-explicit fluid-structure time-integration schemes. Hence, this paper presents two complementary approaches for reducing this computational cost. The first one recognizes that many quantities depending on the wall distance are relatively insensitive to its inaccurate evaluation in the far field. Therefore, it simplifies a state-of-the-art algorithm for computing the wall distance accordingly. The second approach relies on an effective wall distance error estimator to update the evaluation of the wall distance function only when otherwise, a quantity of interest that depends on it would become tainted by an unacceptable level of error. The potential of combining both approaches for dramatically accelerating the computation of the wall distance is demonstrated with the Eulerian simulation of the inflation of a disk-gap-band parachute system in a supersonic airstream.  相似文献   
10.
A robust finite volume method for the solution of high-speed compressible flows in multi-material domains involving arbitrary equations of state and large density jumps is presented. The global domain of interest can include a moving or deformable subdomain that furthermore may undergo topological changes due to, for example, crack propagation. The key components of the proposed method include: (a) the definition of a discrete surrogate material interface, (b) the computation of a reliable approximation of the fluid state vector on each side of a discrete material interface via the construction and solution of a local, exact, two-phase Riemann problem, (c) the algebraic solution of this auxiliary problem when the equation of state allows it, and (d) the solution of this two-phase Riemann problem using sparse grid tabulations otherwise. The proposed computational method is illustrated with the three-dimensional simulation of the dynamics of an underwater explosion bubble.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号