首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
不使用任何模板一步制得空心Fe3O4纳米颗粒,然后将海藻酸钠嫁接在氨基化的空心Fe3O4表面,再利用海藻酸盐与钙离子的作用,在空心Fe3O4表面形成一个凝胶化层,制得海藻酸盐凝胶化的空心Fe3O4纳米颗粒,粒径约为400~500 nm.采用TEM、XRD、XPS、VSM等手段对纳米微球进行表征.VSM表征结果表明在室温下样品磁性材料为超顺磁性.改性Fe3O4纳米颗粒成功地用于柔红霉素的载负和缓释,最大载负率和载药量分别为28.4%和14.2%.缓释结果表明,海藻酸盐凝胶化层的存在,能更有效控制柔红霉素缓慢地释放.  相似文献   

2.
丁皓  申承民  惠超  徐梽川  李晨  田园  时雪钊  高鸿钧 《中国物理 B》2010,19(6):66102-066102
Monodisperse Au-Fe 3 O 4 heterodimeric nanoparticles (NPs) were prepared by injecting precursors into a hot reaction solution.The size of Au and Fe 3 O 4 particles can be controlled by changing the injection temperature.UV-Vis spectra show that the surface plasma resonance band of Au-Fe 3 O 4 heterodimeric NPs was evidently red-shifted compared with the resonance band of Au NPs of similar size.The as-prepared heterodimeric Au-Fe 3 O 4 NPs exhibited superparamagnetic properties at room temperature.The Ag-Fe 3 O 4 heterodimeric NPs were also prepared by this synthetic method simply using AgNO 3 as precursor instead of HAuCl 4.It is indicated that the reported method can be readily extended to the synthesis of other noble metal conjugated heterodimeric NPs.  相似文献   

3.
Magnetite Fe3O4 nanoparticles were synthesized by a co-precipitation method at different pH values. The products were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electronic microscopy. Their magnetic properties were evaluated on a vibrating sample magnetometer. The results show that the shape of the particles is cubic and they are superparamagnetic at room temperature. Magnetic nanofluids were prepared by dispersing the Fe3O4 nanoparticles in water as a base fluid in the presence of tetramethyl ammonium hydroxide as a dispersant. The thermal conductivity of the nanofluids was measured as a function of volume fraction and temperature. The results show that the thermal conductivity ratio of the nanofluids increases with increase in temperature and volume fraction. The highest enhancement of thermal conductivity was 11.5% in the nanofluid of 3 vol% of nanoparticles at 40 °C. The experimental results were also compared with the theoretical models.  相似文献   

4.
α-Fe2O3 nanoparticles were prepared by high-energy ball milling using α-FeOOH as raw materials. The prepared samples were characterized by transmission electron microscopy (TEM), Mössbauer spectroscopy, X-ray diffraction (XRD) and differential thermal analysis–thermogravimetric analysis (DTA–TGA). The results showed that after 90 h milling α-Fe2O3 nanoparticles were obtained, and the particle size is about 20 nm. The mechanism of reaction during milling is supposed that the initial α-FeOOH powder turned smaller and smaller by the high-speed collision during ball milling, later these particles turned to be superparamagnetic, at last these superparamagnetic α-FeOOH particles were dehydrated and transformed into α-Fe2O3.  相似文献   

5.
Fe3O4/PMMA composite particles were fabricated by a simple one-pot hydrothermal method. The magnetic measurement showed that the composite particles displayed a higher saturated magnetization and superparamagnetic property. The rheological properties of the magnetorheological fluids (MRFs) based on Fe3O4/PMMA particles were measured on a rotational rheometer with a magnetic field generator. It was found that the MRFs exhibited better MR effect and sendimentary stability than the similar materials.  相似文献   

6.
Superparamagnetic Fe3O4 nanoparticles were first synthesized via soya bean sprouts (SBS) templates under ambient temperature and normal atmosphere. The reaction process was simple, eco-friendly, and convenient to handle. The morphology and crystalline phase of the nanoparticles were determined from scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD) spectra. The effect of SBS template on the formation of Fe3O4 nanoparticles was investigated using X-ray photoemission spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR). The results indicate that spherical Fe3O4 nanoparticles with an average diameter of 8 nm simultaneously formed on the epidermal surface and the interior stem wall of SBS. The SBS are responsible for size and morphology control during the whole formation of Fe3O4 nanoparticles. In addition, the superconducting quantum interference device (SQUID) results indicate the products are superparamagnetic at room temperature, with blocking temperature (TB) of 150 K and saturation magnetization of 37.1 emu/g.  相似文献   

7.
Methods to synthesize magnetic Fe3O4 nanoparticles and to modify the surface of particles are presented in the present investigation. Fe3O4 magnetic nanoparticles were prepared by the co-precipitation of Fe3+ and Fe2+, NH3·H2O was used as the precipitating agent to adjust the pH value, and the aging of Fe3O4 magnetic nanoparticles was accelerated by microwave (MW) irradiation. The obtained Fe3O4 magnetic nanoparticles were characterized by Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and vibrating sample magnetometer (VSM). The average size of Fe3O4 crystallites was found to be around 8–9 nm. Thereafter, the surface of Fe3O4 magnetic nanoparticles was modified by stearic acid. The resultant sample was characterized by FT-IR, scanning electron microscopy (SEM), XRD, lipophilic degree (LD) and sedimentation test. The FT-IR results indicated that a covalent bond was formed by chemical reaction between the hydroxyl groups on the surface of Fe3O4 nanoparticles and carboxyl groups of stearic acid, which changed the polarity of Fe3O4 nanoparticles. The dispersion of Fe3O4 in organic solvent was greatly improved. Effects of reaction time, reaction temperature and concentration of stearic acid on particle surface modification were investigated. In addition, Fe3O4/polystyrene (PS) nanocomposite was synthesized by adding surface modified Fe3O4 magnetic nanoparticles into styrene monomer, followed by the radical polymerization. The obtained nanocomposite was tested by thermogravimetry (TG), differential scanning calorimetry (DSC) and XRD. Results revealed that the thermal stability of PS was not significantly changed after adding Fe3O4 nanoparticles. The Fe3O4 magnetic fluid was characterized using UV–vis spectrophotometer, Gouy magnetic balance and laser particle-size analyzer. The testing results showed that the magnetic fluid had excellent stability, and had susceptibility of 4.46×10−8 and saturated magnetization of 6.56 emu/g. In addition, the mean size d (0.99) of magnetic Fe3O4 nanoparticles in the fluid was 36.19 nm.  相似文献   

8.
In this paper we report structural and magnetic properties of Fe3O4 nanoparticles synthesized by thermal decomposition of ball milled iron nitrate and citric acid in N2 and air ambient. The XRD pattern of samples which are prepared in air shows some impurity phases, while the samples synthesized in the N2 atmosphere are almost pure Fe3O4 phase. The result shows that by increasing the particle size, the magnetization of the samples increases. The increase of magnetization by increasing the particle size could be attributed to the lower surface spin canting and surface spin disorder of the larger magnetic nanoparticles. The results of ac magnetic susceptibility measurements show that the susceptibility data are not in accordance with the Néel -Brown model for superparamagnetic relaxation, but fit well with conventional critical slowing down model which indicates that the dipole-dipole interactions are strong enough to cause superspin-glass like phase in these samples.  相似文献   

9.
Integrating materials with different functionalities into a composite material to obtain synergetic properties has generated considerable interest in various scientific and technical fields. In this study, a dry-mechanical coating process was used to fix nanosized Al2O3 and CuO particles directly onto the surface of Al2O3 fiber substrates by employing high shear and compression forces. The resulting composite materials showed good dispersion and homogeneous distribution of Al2O3 and CuO nanoparticles. Important coating parameters, including initial particle loadings and processing times were investigated for their effects on coating characteristics and product properties. The experimental results showed that the product surface area increased with higher nanoparticle loadings. The degree of dispersion and homogenous distribution of Al2O3 nanoparticles with CuO nanoparticles increased with the processing time. Additionally, the crystalline phase of raw materials was preserved during the coating process under the conditions studied in this work.  相似文献   

10.
In this paper, we have first demonstrated a facile and green synthetic approach for preparing superparamagnetic Fe3O4 nanoparticles using α-d-glucose as the reducing agent and gluconic acid (the oxidative product of glucose) as stabilizer and dispersant. The X-ray powder diffraction (XRD), X-ray photoelectron spectrometry (XPS), and selected area electron diffraction (SAED) results showed that the inverse spinel structure pure phase polycrystalline Fe3O4 was obtained. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results exhibited that Fe3O4 nanoparticles were roughly spherical shape and its average size was about 12.5 nm. The high-resolution TEM (HRTEM) result proved that the nanoparticles were structurally uniform with a lattice fringe spacing about 0.25 nm, which corresponded well with the values of 0.253 nm of the (3 1 1) lattice plane of the inverse spinel Fe3O4 obtained from the JCPDS database. The superconducting quantum interference device (SQUID) results revealed that the blocking temperature (Tb) was 190 K, and that the magnetic hysteresis loop at 300 K showed a saturation magnetization of 60.5 emu/g, and the absence of coercivity and remanence indicated that the as-synthesized Fe3O4 nanoparticles had superparamagnetic properties. Fourier transform infrared spectroscopy (FT-IR) spectrum displayed that the characteristic band of Fe-O at 569 cm−1 was indicative of Fe3O4. This method might provide a new, mild, green, and economical concept for the synthesis of other nanomaterials.  相似文献   

11.
Aminated-CoFe2O4/SiO2 magnetic nanoparticles (NPs) were prepared from primary silica particles using modified StÖber method. Glucose oxidase (GOD) was immobilized on CoFe2O4/SiO2 NPs via cross-linking with glutaraldehyde (GA). The optimal immobilization condition was achieved with 1% (v/v) GA, cross-linking time of 3 h, solution pH of 7.0 and 0.4 mg GOD (in 3.0 mg carrier). The immobilized GOD showed maximal catalytic activity at pH 6.5 and 40 °C. After immobilization, the GOD exhibited improved thermal, storage and operation stability. The immobilized GOD still maintained 80% of its initial activity after the incubation at 50 °C for 25 min, whereas free enzyme had only 20% of initial activity after the same incubation. After kept at 4 °C for 28 days, the immobilized and free enzyme retained 87% and 40% of initial activity, respectively. The immobilized GOD maintained approximately 57% of initial activity after reused 7 times. The KM (Michaelis-Menten constant) values for immobilized GOD and free GOD were 14.6 mM and 27.1 mM, respectively.  相似文献   

12.
γ-Fe2O3 (maghemite)-silica nanocomposite particles were synthesized using a sol-gel method. The condensation products of 3-glycidoxy propyltrimethoxy silane (GPTMS) and nitrilotriacetic acid (NTA) were introduced onto the surfaces of the γ-Fe2O3-silica nanocomposite particles and subsequently, these modified surfaces were complexed with cobalt (Co+2) metal ions. A possibility of using these surface modified γ-Fe2O3-silica particles for the purification of 6×histidine tagged recombinant benzaldehyde lyase (BAL, EC 4.1.2.38) based on magnetic separation was investigated. X-ray diffraction (XRD), thermal analysis, and vibrating sample magnetometry (VSM) methods were used to characterize the surface modified superparamagnetic γ-Fe2O3 (maghemite)-silica nanoparticles. XRD (Scherer's equation) results indicate that the primary particle size of maghemite was around 11 nm. Magnetic characterization results confirmed that the γ-Fe2O3 (maghemite)-silica nanoparticles were superparamagnetic. According to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) results, these superparamagnetic nanoparticles specifically capture 6×His-tagged BAL from crude extract of Escherichia coli (E. coli) BL21(DE3)pLysS/BALHIS. This study shows that the surface modified γ-Fe2O3 (maghemite)-silica nanoparticles are eligible for immobilized metal-ion affinity adsorption for histidine tagged recombinant proteins with its high capacity (3.16±0.4 mg/g) and selectivity.  相似文献   

13.
Ultrafine α-Fe2O3 nanoparticles with an extremely narrow distribution were synthesized by microwave heating. Transmission electron microscopy (TEM) images showed that most primary particles have ellipsoid shapes, and the average diameter of the primary particles was less than 10 nm. The electron diffraction pattern and fringes in some particles in TEM images showed that these nanoparticles were single crystals. The BET surface area of the freeze-dried product was 217 m2/g. The initial discharge capacity of the α-Fe2O3 nanoparticles exceeded 1007 mA/g (cut-off voltage: 0.5 V). This large capacity corresponds to that calculated by assuming the reduction of Fe3+ to Fe0. The α-Fe2O3 nanoparticles also work as a rechargeable electrode material. The charge-discharge test between 4 V and 1.5 V gave a good rechargeable capacity of about 150 mAh/g.  相似文献   

14.
A new and relatively general route was developed to fabricate graphene oxide (GO)-Fe3O4 hybrid. X-ray diffraction, transmission electron morphology, X-ray photoelectron spectroscopy (XPS) and energy-dispersive spectrum were used to demonstrate the successful attachment of iron oxide nanoparticles to GO sheets. Transmission electron microscopy observation indicates that the size of the Fe3O4 nanoparticles was about 2.7 nm with narrow size distribution. Moreover, this hybrid shows superparamagnetic property and allows the rapid separation under an external-magnetic field. In addition, the method could be extended to further development of graphene-based nanoelectronics.  相似文献   

15.
Spherical uniform-sized iron ferrite nanoparticles were synthesized by adding a disaccharide and seed ferrite crystals into an aqueous reaction solution. The average size range 50-150 nm was controlled by choosing one out of five disaccharides and by changing the amount of the seed crystals. The particles had a saturation magnetization and a crystalline structure which are similar to those of intermediate Fe3O4-γ-Fe2O3. When coated with citrate, the particles with nearly 100 nm diameter were stably suspended in water for 2 days. These novel particles will be utilized as magnetic carriers in biomedical applications.  相似文献   

16.
Fe3O4–polylactide (PLA) core–shell nanoparticles were perpared by surface functionalization of Fe3O4 nanoparticles and subsequent surface-initiated ring-opening polymerization of l-lactide. PLA was directly connected onto the magnetic nanoparticles surface through a chemical linkage. Fourier transform infrared (FT-IR) spectra directly provided evidence of the PLA on the surface of the magnetic nanoparticles. Transmission electron microscopy images (TEM) showed that the magnetic nanoparticles were coated by PLA with a 3-nm-thick shell. The amount of grafted polymer determined by thermal gravimetric analysis was ∼13.3% by weight. X-ray diffraction (XRD) patterns of as-prepared core–shell nanoparticles showed the same structure (spinel cubic lattice type) to that of the bare core materials with similar intensity of the corresponding peaks, and that the polymer coating was amorphous. The particles could be stably dispersed in chloroform for several weeks. The prepared Fe3O4–PLA core–shell nanoparticles were superparamagnetic behavior with a saturation magnetization value nearly identical to that of the bare magnetic nanoparticles, rendering the Fe3O4–PLA nanoparticles for potential applications in both the material technology and biomedical fields.  相似文献   

17.
A novel and efficient immobilization of yeast alcohol dehydrogenase (YADH, EC1.1.1.1) from Saccharomyces cerevisiae has been developed by using the surface functionalization of chitosan-coated magnetic nanoparticles (Fe3O4/KCTS) as support. The magnetic Fe3O4/KCTS nanoparticles were prepared by binding chitosan alpha-ketoglutaric acid (KCTS) onto the surface of magnetic Fe3O4 nanoparticles. Later, covalent immobilization of YADH was attempted onto the Fe3O4/KCTS nanoparticles. The effect of various preparation conditions on the immobilized YADH process such as immobilization time, enzyme concentration and pH was investigated. The influence of pH and temperature on the activity of the free and immobilized YADH using phenylglyoxylic acid as substrate has also been studied. The optimum reaction temperature and pH value for the enzymatic conversion catalyzed by the immobilized YADH were 30 °C and 7.4, respectively. Compared to the free enzyme, the immobilized YADH retained 65% of its original activity and exhibited significant thermal stability and good durability.  相似文献   

18.
Superparamagnetic silica-coated magnetite (Fe3O4) nanoparticles with immobilized metal affinity ligands were prepared for protein adsorption. First, magnetite nanoparticles were synthesized by co-precipitating Fe2+ and Fe3+ in an ammonia solution. Then silica was coated on the Fe3O4 nanoparticles using a sol–gel method to obtain magnetic silica nanoparticles. The condensation product of 3-Glycidoxypropyltrimethoxysilane (GLYMO) and iminodiacetic acid (IDA) was immobilized on them and after charged with Cu2+, the magnetic silica nanoparticles with immobilized Cu2+ were applied for the adsorption of bovine serum albumin (BSA). Scanning electron micrograph showed that the magnetic silica nanoparticles with an average size of 190 nm were well dispersed without aggregation. X-ray diffraction showed the spinel structure for the magnetite particles coated with silica. Magnetic measurement revealed the magnetic silica nanoparticles were superparamagnetic and the saturation magnetization was about 15.0 emu/g. Protein adsorption results showed that the nanoparticles had high adsorption capacity for BSA (73 mg/g) and low nonspecific adsorption. The regeneration of these nanoparticles was also studied.  相似文献   

19.
Medical interest in nanotechnology originates from a belief that nanoscale therapeutic devices can be constructed and directed towards its target inside the human body. Such nanodevices can be engineered by coupling superparamagnetic nanoparticle to biomedically active proteins. We hereby report the immobilization of a PhEst, a S-formylglutathione hydrolase from the psychrophilic P. haloplanktis TAC125 onto the gold coated surface of modified superparamagnetic core-shell nanoparticles (Fe3O4@Au). The synthesis of the nanoparticles is also reported. S-formylglutathione hydrolases constitute a family of ubiquitous enzymes which play a key role in formaldehyde detoxification both in prokaryotes and eukaryotes. PhEst was originally annotated as a putative feruloyl esterase, an enzyme that releases ferulic acid (an antioxidant reactive towards free radicals such as reactive oxygen species) from polysaccharides esters. Dynamic light scattering, scanning electron microscopy with energy dispersive X-ray spectroscopy, UV–visible absorption spectroscopy, fluorescence spectroscopy, magnetic separation technique and enzyme catalytic assay confirmed the chemical composition of the gold covered superparamagnetic nanoparticles, the binding and activity of the enzyme onto the nanoparticles. Activity data in U/ml confirmed that the immobilized enzyme is approximately 2 times more active than the free enzyme in solution. Such particles can be directed with external magnetic fields for bio-separation and focused towards a medical target for therapeutical as well as bio-sensor applications.  相似文献   

20.
To attain the complete filling of the channels of MCM-41 with magnetite and maghemite, we have tried out an alternative method to the incipient wetness impregnation. The mesoporous material was instilled with a Fe-carrying organic salt after subjecting the matrix to a silylation treatment. Thus, a solid of 7.7 wt.% iron-loaded MCM-41 was obtained. Different subsequent thermal treatments were used to produce γ-Fe2O3 or Fe3O4. The Mössbauer and magnetic results show that after this method, the as-prepared composite displays a size-distribution of magnetic particles. It is mainly made up of fine particles that display a superparamagnetic relaxation at room temperature and get blocked at ≈42 K for the AC susceptibility time-scale measurements both for γ-Fe2O3 and Fe3O4 particles. For both samples, about 24% of larger iron-containing phases are magnetically blocked at room temperature. For the Fe3O4 particles, this fraction undergoes the Verwey transition at about 110 K; in addition, there is a minor Fe (III) fraction that remains paramagnetic down to 4.2 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号