首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Experimental studies of rheological behavior of uncoated magnetite nanoparticles (MNPs)U and polyvinyl alcohol (PVA) coated magnetite nanoparticles (MNPs)C were performed. A Co-precipitation technique under N2 gas was used to prevent undesirable critical oxidation of Fe2+. The results showed that smaller particles can be synthesized in both cases by decreasing the NaOH concentration which in our case this corresponded to 35 nm and 7 nm using 0.9 M NaOH at 750 rpm for (MNPs)U and (MNPs)C. The stable magnetic fluid contained well-dispersed Fe3O4/PVA nanocomposites which indicated fast magnetic response. The rheological measurement of magnetic fluid indicated an apparent viscosity range (0.1–1.2) pa s at constant shear rate of 20 s−1 with a minimum value in the case of (MNPs)U at 0 T and a maximum value for (MNPs)C at 0.5 T. Also, as the shear rate increased from 20 s−1 to 150 s−1 at constant magnetic field, the apparent viscosity also decreased correspondingly. The water-based ferrofluid exhibited the non-Newtonian behavior of shear thinning under magnetic field.  相似文献   

2.
Fe3O4 magnetic nanoparticles (MNPs) were synthesized by the co-precipitation of Fe3+ and Fe2+ with ammonium hydroxide. The sodium citrate-modified Fe3O4 MNPs were prepared under Ar protection and were characterized by Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and vibrating sample magnetometer (VSM). To improve the oxidation resistance of Fe3O4 MNPs, a silica layer was coated onto the modified and unmodified MNPs by the hydrolysis of tetraethoxysilane (TEOS) at 50 °C and pH 9. Afterwards, the silica-coated Fe3O4 core/shell MNPs were modified by oleic acid (OA) and were tested by IR and VSM. IR results revealed that the OA was successfully grafted onto the silica shell. The Fe3O4/SiO2 core/shell MNPs modified by OA were used to prepare water-based ferrofluids (FFs) using PEG as the second layer of surfactants. The properties of FFs were characterized using a UV-vis spectrophotometer, a Gouy magnetic balance, a laser particle size analyzer and a Brookfield LVDV-III+ rheometer.  相似文献   

3.
Magnetic protein microspheres with core-shell structure were prepared through a novel approach based on the sonochemical method and the emulsion solvent evaporation method. The microspheres are composed of the oleic acid and undecylenic acid modified Fe3O4 cores and coated with globular bovine serum albumin (BSA). Under an optimized condition, up to 57.8 wt% of approximately 10 nm superparamagnetic Fe3O4 nanoparticles could be uniformly encapsulated into the BSA microspheres with the diameter of approximately 160 nm and the high saturation magnetization of 38.5 emu/g, besides of the abundant functional groups. The possible formation mechanism of magnetic microspheres was discussed in detail.  相似文献   

4.
A novel method is described for the preparation of superparamagnetic mesoporous maghemite (γ-Fe2O3)/silica (SiO2) composite microspheres to allow rapid magnetic separation of DNA from biological samples. With magnetite (Fe3O4) and silica nanoparticles as starting materials, such microspheres were synthesized by the following two consecutive steps: (1) formation of monodispersed organic/inorganic hybrid microspheres through urea-formaldedyde (UF) polymerization and (2) removal of the organic template and phase transformation of Fe3O4 to γ-Fe2O3 by calcination at elevated temperatures. The as-synthesized particles obtained by heating at temperature 300 °C feature spherical shape and uniform particle size (dparticle=1.72 μm), high saturation magnetization (Ms=17.22 emu/g), superparamagnetism (Mr/Ms=0.023), high surface area (SBET=240 m2/g), and mesoporosity (dpore=6.62 nm). The composite microsphere consists of interlocked amorphous SiO2 nanoparticles, in which cubic γ-Fe2O3 nanocrystals are homogeneously dispersed and thermally stable against γ- to α-phase transformation at temperatures up to 600 °C. With the exposed iron oxide nanoparticles coated with a thin layer of silica shell, the magnetic microspheres were used as a solid-phase adsorbent for rapid extraction of genomic DNA from plant samples. The results show that the DNA templates isolated from pea and green pepper displayed single bands with molecular weights greater than 8 kb and A260/A280 values of 1.60-1.72. The PCR amplification of a fragment encoding the endogenous chloroplast ndhB gene confirmed that the DNA templates obtained were inhibitor-free and amenable to sensitive amplification-based DNA technologies.  相似文献   

5.
The adsorption of alginate (Alg) onto the surface of in water dispersed Fe3O4 nanoparticles and zeta potential of alginate-coated Fe3O4 nanoparticles have been investigated to optimize the colloidal stability of Alg-coated Fe3O4 nanoparticles. The adsorption amount of Alg increased with the decrease of adsorption pH. The zeta potential of Fe3O4 nanoparticles shifted to a lower value after adsorption of Alg. The lower adsorption pH was the lower zeta potential of Fe3O4 nanoparticles became. The Alg-coated Fe3O4 nanoparticles were found to be stabilized by steric and electrostatic repulsions. Those prepared at pH 6 were not stable around pH 5, and those prepared at pH 4 became unstable at pH below 3.5. Alg of Mw 45 kDa was a little bit more adsorbed onto nanoparticles surface than that of Mw 24 kDa. An average Fe3O4 core size of 9.3 ± 1.7 nm was found by transmission electronic microscopy. An average hydrodynamic diameter of 30-150 nm was measured by photon correlation spectroscopy. However, an average core size of 10 nm and an average hydrodynamic diameter of 38 nm were estimated from the magnetization curve of the concentrated magnetic fluids (MFs). The maximum available saturation magnetization of MFs was about 3.5 kA/m.  相似文献   

6.
Synthesis of magnetite (Fe3O4) nanoparticles under oxidizing environment by precipitation from aqueous media is not straightforward because Fe2+ gets oxidized to Fe3+ and thus the ratio of Fe3+:Fe2+=2:1 is not maintained during the precipitation. A molar ratio of Fe3+:Fe2+ smaller than 2:1 has been used by many to compensate for the oxidation of Fe2+ during the preparation. In this work, we have prepared iron oxide nanoparticles in air environment by the precipitation technique using initial molar ratios Fe3+:Fe2+?2:1. The phases of the resulting powders have been determined by several techniques. It is found that the particles consist mainly of maghemite with little or no magnetite phase. The particles have been suspended in non-aqueous and aqueous media by coating the particles with a single layer and a bilayer of oleic acid, respectively. The particle sizes, morphology and the magnetic properties of the particles and the ferrofulids prepared from these particles are reported. The average particle sizes obtained from the TEM micrographs are 14, 10 and 9 nm for the water, kerosene and dodecane-based ferrofluids, respectively, indicating a better dispersion in the non-aqueous media. The specific saturation magnetization (σs) value of the oleic-acid-coated particles (∼53 emu/g) is found to be lower than that for the uncoated particles (∼63 emu/g). Magnetization σs of the dodecane-based ferrofluid is found to be 10.1 emu/g for a volume fraction of particles ?=0.019. Zero coercivity and zero remanance on the magnetization curves indicate that the particles are superparamagnetic (SPM) in nature.  相似文献   

7.
The aim of this study was to develop a simple and rapid method for purification of ultrapure plasmid DNA with high yields from bacterial cultures. Nanosized superparamagnetic nanoparticles (Fe3O4) were prepared by chemical precipitation method using Fe2+, Fe3+ salt, and ammonium hydroxide under a nitrogen atmosphere. Silica–magnetite nanocomposites were prepared by the method of acid hydrolysis of tetraethoxysilane (TEOS) to coat the silica onto magnetite nanoparticles. DNA was adsorbed to the support under high salt conditions, and recovered directly in water for immediate downstream application, without the need for precipitation. We demonstrated that a useful plasmid, pRSETB-EGFP, encoding for the green fluorescent protein with T7 promoter, could be amplified in Escherichia coli of DE3 strain. Up to approximately 43 μg of high-purity (A260/A280 ratio=1.75) plasmid DNA was isolated from 3 ml of an overnight bacterial culture. The eluted plasmid DNA was used directly for restriction enzyme digestion, bacterial cell transformation and polymerase chain reaction (PCR) amplification with success. The protocol, starting from the preparation of bacterial lysate and ending with purified plasmid takes less than 8 min. The silica–magnetite nanocomposites deliver significant time-savings, overall higher yields, lower RNA contamination, and better PCR amplification compared to commercial available silica-based and other methods.  相似文献   

8.
The fabrication of condensed silica and mesoporous silica coated spinel CoFe2O4 and FeCo alloy magnetic nanocomposites are reported. The encapsulation of well-defined 5 nm thick uniform silica layer on CoFe2O4 magnetic nanoparticles was performed. The formation of mesopores in the shell was a consequence of removal of organic group of the precursor through annealing. The NiO nanoparticles were loaded into the mesoporous silica. The mesoporous silica shells leads to a larger coercivity than that of pure CoFe2O4 magnetic nanoparticles due to the decrease of interparticle interactions and magneto-elastic anisotropy. In addition, the FeCo nanoparticles were coated by condensed and mesoporous silica. The condensed silica can protect the reactive FeCo alloy from oxidation up to 300 °C. However, saturation magnetization of FeCo nanoparticles coated by silica after 400 °C annealing is dramatically decreased due to the oxidation of the FeCo core. The mesoporous silica coated magnetic nanostructure loaded with NiO as a final product could be used in the field of biomedical applications.  相似文献   

9.
Methods to synthesize magnetic Fe3O4 nanoparticles and to modify the surface of particles are presented in the present investigation. Fe3O4 magnetic nanoparticles were prepared by the co-precipitation of Fe3+ and Fe2+, NH3·H2O was used as the precipitating agent to adjust the pH value, and the aging of Fe3O4 magnetic nanoparticles was accelerated by microwave (MW) irradiation. The obtained Fe3O4 magnetic nanoparticles were characterized by Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and vibrating sample magnetometer (VSM). The average size of Fe3O4 crystallites was found to be around 8–9 nm. Thereafter, the surface of Fe3O4 magnetic nanoparticles was modified by stearic acid. The resultant sample was characterized by FT-IR, scanning electron microscopy (SEM), XRD, lipophilic degree (LD) and sedimentation test. The FT-IR results indicated that a covalent bond was formed by chemical reaction between the hydroxyl groups on the surface of Fe3O4 nanoparticles and carboxyl groups of stearic acid, which changed the polarity of Fe3O4 nanoparticles. The dispersion of Fe3O4 in organic solvent was greatly improved. Effects of reaction time, reaction temperature and concentration of stearic acid on particle surface modification were investigated. In addition, Fe3O4/polystyrene (PS) nanocomposite was synthesized by adding surface modified Fe3O4 magnetic nanoparticles into styrene monomer, followed by the radical polymerization. The obtained nanocomposite was tested by thermogravimetry (TG), differential scanning calorimetry (DSC) and XRD. Results revealed that the thermal stability of PS was not significantly changed after adding Fe3O4 nanoparticles. The Fe3O4 magnetic fluid was characterized using UV–vis spectrophotometer, Gouy magnetic balance and laser particle-size analyzer. The testing results showed that the magnetic fluid had excellent stability, and had susceptibility of 4.46×10−8 and saturated magnetization of 6.56 emu/g. In addition, the mean size d (0.99) of magnetic Fe3O4 nanoparticles in the fluid was 36.19 nm.  相似文献   

10.
In this paper, we report a new route to synthesize novel magnetic hollow silica nanospheres (MHSNs) using polystyrene particles as sacrificial templates, and TEOS and Fe3O4 as precursors. TEM, EDS, XRD, and SQUID were applied to characterize MHSNs. TEM and EDS results show that the MHSNs consist of about 200 nm of hollow cores and ∼35 nm shells with ∼10 nm of Fe3O4 nanoparticles embedded. The polystyrene beads were successfully removed by immersing the as-prepared silica nanocomposite in a toluene solution. XRD results demonstrate that the Fe3O4 magnetic nanoparticles still keep spinel structure even heated at low temperature. The surface status of the polystyrene beads and Fe3O4 nanoparticles has an important effect on the formation of the MHSNs. The MHSNs present a superparamagnetism at room temperature by SQUID measurement. The MHSNs have potential applications in biosystem and nanomedicine.  相似文献   

11.
Magnetotransport properties of magnetite thin films deposited on gallium arsenide and sapphire substrates at growth temperatures between 473 and 673 K are presented. The films were grown by UV pulsed laser ablation in reactive atmospheres of O2 and Ar, at working pressure of 8 × 10−2 Pa. Film stoichiometry was determined in the range from Fe2.95O4 to Fe2.97O4. Randomly oriented polycrystalline thin films were grown on GaAs(1 0 0) while for the Al2O3(0 0 0 1) substrates the films developed a (1 1 1) preferred orientation. Interfacial Fe3+ diffusion was found for both substrates affecting the magnetic behaviour. The temperature dependence of the resistance and magnetoresistance of the films were measured for fields up to 6 T. Negative magnetoresistance values of ∼5% at room temperature and ∼10% at 90 K were obtained for the as-deposited magnetite films either on GaAs(1 0 0) or Al2O3(0 0 0 1).  相似文献   

12.
Superparamagnetic nanoparticles functionalized with carboxymethyl dextran (CM-dextran) were synthesized by a two-step method. First, the magnetic nanoparticles (MNPs) coated with dextran (Mw ≈ 20000) were prepared by co-precipitation of Fe2+ and Fe3+ ions. Then, dextran on the surface of MNPs reacted with monochloroacetic acid (MCA) in alkaline condition. The influences of temperature and reactant concentration on the amount of -COOH on the surface of nanoparticles were systematically studied. The obtained MNPs coated with CM-dextran were stable over the entire range of pH and NaCl concentration. The MRI experiment indicated that the CM-dextran MNPs could potentially be used as MRI contrast agents for magnetic resonance molecular imaging.  相似文献   

13.
Single-phased Cu2+-substituted spinel-related Li0.5Fe2.5O4 was synthesized by sintering a mixture of Cu2+-substituted corundum-related α-Fe2O3 and Li2CO3 at 700 °C which is ∼325-400 °C lower than the temperature at which the material is prepared by the conventional ceramic methods. X-ray powder diffraction, X-ray photoelectron spectroscopy, Mössbauer spectroscopy and magnetic measurements were used to characterize the material. In contrast to high-temperature synthetic routes, the present one leads to a Cu+-and Fe2+-cation free material, thereby optimizing its technological value. Rietveld refinement of the XRD data favors a structural model in which Cu2+ substitutes for both Fe3+ and Li+ at the octahedral sites. Mössbauer and magnetic data are consistent with this model if spin thermal reversal and/or spin canting are taken into account for the later.  相似文献   

14.
In this paper, the Dy0.75Fe1.25O3 orthoferrite nanoparticles were synthesized successfully by sol-gel method. Dy0.75Fe1.25O3 orthoferrite nanoparticles are obtained by calcining the flakes at 600 and 700 °C. The magnetic properties of the different samples are investigated using Quantum Design MPMS SQUID magnetometer and MS-500 Mössbauer spectrometer. Magnetic phase γ-Fe2O3 coexists in the samples calcined at 600 °C and orthoferrite phase is completely recovered in the samples calcined at 700 °C. Although excessive Fe3+ ions were introduced, none of these iron spins couple magnetically with Dy3+ ions.  相似文献   

15.
Iron oxide magnetic nano-particles (MNPs) have been prepared in aqueous solution by a modified co-precipitation method. Surface modifications have been carried out using tetraethoxysilane (TEOS), triethoxysilane (TES) and 3-aminopropyltrimethoxysilane (APTMS). The uncoated and coated particle products have been characterized with transmission electron microscope (TEM), energy dispersive X-ray (EDX) spectroscopy, infrared (IR) and Raman spectroscopy, and thermal gravimetric analysis (TGA). The particle sizes were determined from TEM images and found to have mean diameters of 13, 16 and 14 nm for Fe3O4, TES/Fe3O4 and APTMS/Fe3O4, respectively. IR and Raman spectroscopy has been applied to study the effect of thermal annealing on the uncoated and coated particles. The results have shown that magnetite nano-particles are converted to maghemite at 109 °C and then to hematite by 500 °C. In contrast, the study of the effect of thermal annealing of micro-crystalline magnetite by IR spectroscopy revealed that the conversion to hematite began by 300 °C and that no maghemite could be identified as an intermediate phase. IR spectra and TGA measurements revealed that the Si-H and 3-aminopropyl functional groups in TES and APTMS coated magnetite nano-particles decomposed below 500 °C while the silica layer around the iron oxide core remained unchanged. The molecular ratio of APTMS coating to iron oxide core was determined to be 1:7 from the TGA data. Raman scattering signals have indicated that MNPs could be converted to maghemite and then to hematite using increasing power of laser irradiation in a manner similar to that observed for thermal annealing.  相似文献   

16.
Gold-coated magnetic nanoparticles were synthesized with size ranging from 15 to 40 nm using sodium citrates as the reducing agent. Oxidized magnetites (Fe3O4) fabricated by co-precipitation of Fe2+ and Fe3+ in strong alkaline solution were used as magnetic cores. The structures of gold (Au) shell and magnetic core (Au–Fe) were studied by transmission electron microscopy (TEM) image and energy dispersive spectroscopy (EDS) spectrum. Results from high-resolution X-ray diffraction (HR XRD) show that the Au–Fe oxide nanoparticles have a face-centered cubic shape with the crystalline faces of {1 1 1}. The Au-coated magnetic nanoparticles exhibited a surface plasmon resonance peak at 528 nm. The nanoparticles are well dispersed in distilled water. A 3000 G permanent magnet was successfully used for the separation of the functionalized nanoparticles. Magnetic properties of the nanoparticles were determined by magnetic force microscope (MFM) in nanometric resolution and vibrating sample magnetometer (VSM). Magnetic separation of biological molecules using Au-coated magnetic oxide composite nanoparticles was examined after attachment of protein immunoglobulin G (IgG) through electrostatic interactions. Using this method, separation was achieved with a maximum yield of 35% at an IgG concentration of 400 ng/ml.  相似文献   

17.
In this paper, we propose a facile one-step strategy to prepare Fe3O4@amorphous carbon/reduced graphite oxide nanocomposites (FCRGs) under hydrothermal conditions. A transmission electron microscopy image has shown that the as-formed Fe3O4 nanoparticles coated with a layer of amorphous carbon are wrapped by reduced graphite oxide (r-GO) sheets. The diameter of Fe3O4 nanoparticles is less than 50 nm. N2 adsorption/desorption isotherms indicate that the specific surface area of FCRG is 31.6 m2/g with porous structure. FCRG exhibits improved cycling stability and rate performances as a potential anode material for high-performance lithium ion batteries.  相似文献   

18.
Several Angustifolia Kunth bamboo fibers, which have been previously treated with an alkaline solution, were coated with magnetite particles. The coating of the fibers was achieved by an in-situ co-precipitation method with Fe2+ and Fe3+in NaOH or NH4OH. The fibers were evaluated by chemical analysis using atomic absorption (A.A.) technique, structural characterization by X-ray diffraction (XRD), thermal stability with thermo-gravimetric analysis (TGA) in nitrogen at temperature range between 23 °C and 800 °C and magnetic behavior using vibrating sample magnetometry (VSM) applying a magnetic field between −27 KOe and 27 KOe at room temperature. We found that the thermal stability and magnetization depend of the synthesis method used to cover the Angustifolia Kunth bamboo fibers. In addition, an improved magnetic response was observed when NaOH solution is used to generate the magnetite coating on the fiber surface.  相似文献   

19.
Core/shell nanoparticles consisting of a magnetic core of zinc-substituted manganese ferrite (Mn0.4Zn0.6Fe2O4) and a shell of silica (SiO2) are prepared by a sol-gel method using tetraethyl orthosilicate (TEOS) as a precursor material for silica and salts of iron, manganese and zinc as the precursor of the ferrite. Three weight percentages of the shell materials of SiO2 are used to prepare the coated nanoparticles. The X-ray diffractograms (XRD) of the coated and uncoated magnetic nanoparticles confirmed that the magnetic nanoparticles are in their mixed spinel phase in an amorphous matrix of silica. Particles sizes of the samples annealed at different temperatures are estimated from the width of the (3 1 1) line of the XRD pattern using the Debye-Sherrer equation. The information regarding the crystallographic structure together with the particles sizes extracted from the high-resolution transmission electron microscopy (HRTEM) of a few selected samples are in agreement with those obtained from the XRD. HRTEM observations revealed that particles are coated with silica. The calculated thickness is in agreement with that obtained from the HRTEM pictures. Hysteresis loops observed in the temperature range 300 down to 5 K and Mössbauer spectra at room temperature indicate superparamagnetic relaxation of the nanoparticles.  相似文献   

20.
A novel and efficient immobilization of yeast alcohol dehydrogenase (YADH, EC1.1.1.1) from Saccharomyces cerevisiae has been developed by using the surface functionalization of chitosan-coated magnetic nanoparticles (Fe3O4/KCTS) as support. The magnetic Fe3O4/KCTS nanoparticles were prepared by binding chitosan alpha-ketoglutaric acid (KCTS) onto the surface of magnetic Fe3O4 nanoparticles. Later, covalent immobilization of YADH was attempted onto the Fe3O4/KCTS nanoparticles. The effect of various preparation conditions on the immobilized YADH process such as immobilization time, enzyme concentration and pH was investigated. The influence of pH and temperature on the activity of the free and immobilized YADH using phenylglyoxylic acid as substrate has also been studied. The optimum reaction temperature and pH value for the enzymatic conversion catalyzed by the immobilized YADH were 30 °C and 7.4, respectively. Compared to the free enzyme, the immobilized YADH retained 65% of its original activity and exhibited significant thermal stability and good durability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号