首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
基于密度泛函理论,采用第一性原理赝势平面波方法计算了Co、Cr单掺杂以及Co-Cr共掺杂金红石型TiO2的能带结构、态密度和光学性质.计算结果表明:纯金红石的禁带宽度为3.0eV,Co掺杂金红石型TiO2的带隙为1.21eV,导带顶和价带底都位于G点处,仍为直接带隙,在价带与导带之间出现了由Co 3d和Ti 3d轨道杂化形成的杂质能级;Cr掺杂金红石型TiO2的直接带隙为0.85eV,在价带与导带之间的杂质能级由Cr 3d和Ti 3d轨道杂化轨道构成,导带和价带都向低能级方向移动;Co-Cr共掺杂,由于电子的强烈杂化,使O-2p态和Ti-3d态向Co-3d和Cr-3d态移动,使价带顶能级向高能级移动而导带底能级向低能方向移动,极大地减小了禁带的宽度,也是共掺杂改性的离子选择依据.掺杂金红石型TiO2的介电峰、折射率和吸收系数峰都向低能方向移动;在E2.029eV的范围内,纯金红石的ε2、k和吸收系数为零,掺杂后的跃迁强度都大于未掺杂时的跃迁强度,Co-Cr共掺杂的跃迁强度大于Co掺杂及Cr掺杂,说明Co、Cr共掺杂更能增强电子在低能端的光学跃迁,具有更佳的可见光催化性能.  相似文献   

2.
冯庆  王寅  王渭华  岳远霞 《计算物理》2012,29(4):593-600
采用基于第一性原理的平面波超软赝势方法研究N和S单掺杂以及N和S共掺杂金红石相TiO2的能带结构,态密度和光学性质.结果表明:N掺杂导致禁带宽度减小为1.43 eV,并且在价带上方形成了一条杂质能带;S掺杂导致费米能级上移靠近导带,直接带隙减小为0.32 eV;N和S共掺杂导致能带结构中出现了两条杂质能带,靠近导带的一条杂质能级距离导带底约0.35 eV,靠近价带的一条杂质能级距离价带顶约0.85 eV,杂质能级主要由N原子的2p轨道和S原子的3p轨道组成.N和S掺杂后不但使TiO2的吸收带产生红移,而且在可见光区具有较大的吸收系数,光催化活性增强.  相似文献   

3.
采用基于密度泛函理论的第一性原理计算方法,对未掺杂及Ce掺杂6H-SiC的电子结构和光学性质进行理论计算.计算结果表明,未掺杂6H-SiC是间接带隙半导体,其禁带宽度为2.045 eV,掺杂Ce元素,带隙宽度下降为0.812 eV.未掺杂6H-SiC在价带的低能区,Si-3s、C-2s电子轨道对态密度的贡献较大,在价带的高能区,主要是由Si-3p、Si-3s、C-2p态组成.掺杂后Ce原子的4f轨道主要贡献在导带部分,掺杂后电导率提高.未掺杂时,只有一个介电峰,是价带电子跃迁到导带电子所致,掺杂后有两个介电峰,第一个介电峰是由于导带电子跃迁到Ce原子4f轨道上产生,第二个峰是价带电子向导带电子跃迁产生.未掺杂6H-SiC,在能量为10.31 eV处吸收系数达到最大值,掺杂后在能量为6.57 eV处,吸收系数达到最大值.  相似文献   

4.
采用基于密度泛函理论的第一性原理计算方法,对未掺杂及Ce掺杂6H-SiC的电子结构和光学性质进行理论计算.计算结果表明,未掺杂6H-SiC是间接带隙半导体,其禁带宽度为2.045 eV,掺杂Ce元素,带隙宽度下降为0.812 eV.未掺杂6H-SiC在价带的低能区,Si-3s、C-2s电子轨道对态密度的贡献较大,在价带的高能区,主要是由Si-3p、Si-3s、C-2p态组成.掺杂后Ce原子的4f轨道主要贡献在导带部分,掺杂后电导率提高.未掺杂时,只有一个介电峰,是价带电子跃迁到导带电子所致,掺杂后有两个介电峰,第一个介电峰是由于导带电子跃迁到Ce原子4f轨道上产生,第二个峰是价带电子向导带电子跃迁产生.未掺杂6H-SiC,在能量为10.31 eV处吸收系数达到最大值,掺杂后在能量为6.57 eV处,吸收系数达到最大值.  相似文献   

5.
基于第一性原理方法研究了Mn,N单掺SnO2及Mn-N共掺SnO2的能带结构以及态密度。研究结果表明:单掺和共掺均能使带隙值降低,态密度能量向低能级方向移动,费米能级附近出现杂质能级,材料导电性增强。Mn-N共掺SnO2材料与Mn单掺相比价带顶和导带顶能级出现分离,带隙中出现的杂质能级更多,Mn的分波态密度更加弥散, Mn-N共掺使Mn的掺入更加容易。  相似文献   

6.
基于第一性原理的平面波超软赝势法对KDP(KH2PO4)和尿素(CH4N2O)晶体的能带结构、电子态密度、电荷差分密度以及布局分析进行了计算讨论.结果表明:尿素晶体中的C1-O1、C1-N1、N1-H2和N1-H1键都具有共价键特性,带隙值为4.636 eV,价带顶主要由H-1s与N、O的2p态贡献,导带底主要是H-1s与C、N、O的2p态贡献;KDP晶体的H1-O1键具有离子性而P1-O1则具有共价性,带隙宽度为5.713 eV,价带顶主要由O-2p以及P-3p贡献,导带底主要由H-1s、P-3s和3p以及K-4s和3p态贡献.  相似文献   

7.
近年来,Fe和N掺杂锐钛矿相TiO2半导体在实验中发现许多优异性能,本文采用基于密度泛函理论的平面波超软赝势方法研究了纯锐钛矿相TiO2、Fe和N单掺杂及Fe和N共掺杂TiO2的能带结构、电荷布居、态密度和光学性质.分析发现:Fe掺杂引起杂质能带位于禁带中央,杂质能带最高点与导带相距大约0.6 eV而最低点与价带相距大约0.2 eV;N掺杂引起的杂质能带位于价带顶部附近. Fe和N共掺杂后杂质能带由两部分组成,位于价带顶上方0.62 eV和导带底下方0.22 eV处,其中一层杂质能带主要由N原子的2p轨道和Fe原子的3d轨道杂化形成,而另一条杂质能带主要由Fe原子的3d轨道形成,由于杂质能级的出现,使锐钛矿TiO2的禁带宽度变小.对光学性质分析发现:Fe和N共掺杂会使锐钛矿TiO2光学吸收带边红移,可见光区的光吸收系数明显增大,在低能区出现了新的吸收峰,对应能量为1.82 eV,与实验结果相符.  相似文献   

8.
采用基于密度泛函理论的第一性原理计算方法,对未掺杂及La掺杂6H-SiC的电子结构和光学性质进行理论计算.计算结果表明,未掺杂6H-SiC是间接带隙半导体,其禁带宽度为2.045 eV,掺杂La元素,形成P型间接半导体,带隙宽度下降为0.886 eV.未掺杂6H-SiC在价带的低能区,Si-3s、C-2s电子轨道对态密度的贡献较大,在价带的高能区,主要是由Si-3p、Si-3s、C-2p态组成.掺杂后La的5d轨道与6H-SiC的sp~3轨道杂化主要贡献在价带部分,而对导带的贡献相对较小,掺杂后电导率提高.未掺杂时,只有一个介电峰,是价带电子跃迁到导带电子所致,掺杂后有两个介电峰,其中第一个介电峰是由sp~3杂化轨道上的电子跃迁到La原子5d轨道上产生.未掺杂6H-SiC,在能量为10.31处吸收系数达到最大值,掺杂后在能量为7.35 eV处,吸收系数达到最大值.  相似文献   

9.
此文用密度泛函理论的平面波赝势方法研究BiNbO4的电子结构和光学性质.获得了BiNbO4是一种禁带宽度为2.74 eV的直接带隙半导体, 价带顶主要是由O-2p态与Bi-6s态杂化而成,而导带底主要是由Nb-4d态构成等有益结果; 还分析得出介电函数、复折射率、能量损失等光学性质与电子态密度、能带结构存在内在的联系.  相似文献   

10.
基于密度泛函理论(DFT)第一性原理对LuPO4和YPO4两种磷酸盐晶体的电子结构进行计算模拟.结果表明:LuPO4的带隙为5.639 eV,YPO4的带隙为4.884 eV.通过对态密度的分析得知LuPO4的导带主要贡献来自Lu的5d态电子,费米能级附近价带主要由Lu的4f态和O的2p态电子贡献. YPO4的导带主要贡献来自Y的4d态电子,价带顶的主要贡献来自于O的2p态电子.通过电荷密度和布局分析得知了材料内部原子间的电荷转移情况,进而对原子间成键情况进行了分析与讨论.  相似文献   

11.
采用基于密度泛函理论(DFT)的第一性原理中的平面波超软赝势(PWPP)方法对理想TiO_2,N单掺杂,Pt单掺杂和Pt-N共掺杂锐钛矿相TiO_2的电子结构进行计算,分析N单掺杂、Pt单掺杂及Pt-N共掺杂对锐钛矿相TiO_2的晶体结构、能带和态密度的影响.计算结果表明:掺杂后TiO_2的晶格发生畸变,原子间键长的变化使晶格发生膨胀,Pt单掺杂、N单掺杂TiO_2禁带宽度变窄,Pt-N共掺杂TiO_2分别在价带顶和导带底产生杂质能级,且禁带宽度缩小范围大,表明Pt-N共掺杂能进一步提高锐钛矿TiO_2催化性能.  相似文献   

12.
本文采用基于密度泛函理论的第一性原理平面波赝势方法,对LaPO4和ScPO4的能带结构、电子态密度及光学性质进行计算和分析.计算结果表明:LaPO4的禁带宽度为5.646 eV,ScPO4的禁带宽度为4.531 eV. LaPO4晶体价带顶主要由P-3s、P-3p及O-2p态贡献,导带底主要是由La-5d态贡献;ScPO4晶体价带顶主要由P-3s、P-3p及O-2p态贡献,导带顶主要是由Sc-3d态贡献.就光学性质而言,ScPO4的静介电常数是2.03,比LaPO4(1.92)的静介电常数大,体系极化能力较好.  相似文献   

13.
The electronic structural, effective masses of carriers, and optical properties of pure and La-doped Cd_2SnO_4 are calculated by using the first-principles method based on the density functional theory. Using the GGA+U method, we show that Cd_2SnO_4 is a direct band-gap semiconductor with a band gap of 2.216 eV, the band gap decreases to 2.02 e V and the Fermi energy level moves to the conduction band after La doping. The density of states of Cd_2SnO_4 shows that the bottom of the conduction band is composed of Cd 5 s, Sn 5 s, and Sn 5 p orbits, the top of the valence band is composed of Cd 4d and O 2p, and the La 5 d orbital is hybridized with the O 2 p orbital, which plays a key role at the conduction band bottom after La doping. The effective masses at the conduction band bottom of pure and La-doped Cd_2SnO_4 are 0.18 m0 and 0.092 m_0, respectively, which indicates that the electrical conductivity of Cd_2SnO_4 after La doping is improved. The calculated optical properties show that the optical transmittance of La-doped Cd_2SnO_4 is 92%, the optical absorption edge is slightly blue shifted, and the optical band gap is increased to 3.263 eV. All the results indicate that the conductivity and optical transmittance of Cd_2SnO_4 can be improved by doping La.  相似文献   

14.
采用基于密度泛函理论的第一性原理赝势平面波方法,对稀土元素La,Y单掺杂和La和Y共掺杂GaN的晶格常数、电子结构及光学性质进行了计算与分析.计算结果表明:掺杂改变了GaN的能带结构,未掺杂和Y掺杂形成导带底和价带顶位于G点的直接带隙半导体,而La掺杂和La和Y共掺杂形成导带底位于G点,价带顶位于Q点的间接带隙半导体.可以通过掺杂元素来调制GaN的禁带宽度和带隙类型,掺杂均提高GaN在低能区的静态介电常数、反射率、折射率,使光子的跃迁强度增大,说明稀土元素La,Y掺杂可有效调制GaN的光电性质.  相似文献   

15.
采用第一性原理方法对Ti掺杂CrSi2的几何结构、电子结构、复介电函数、吸收系数、反射谱、折射率和光电导率进行了计算,对Ti置换Cr原子后的光电特性变化进行了分析.结果表明:Ti置换Cr原子后,晶格常数a,b和c均增大,体积变大;Ti的掺入引入了新的杂质能级,导致费米能级插入价带中,Cr11TiSi24变为p型半导体,带隙宽度由未掺杂时的0.38eV变为0.082eV,价带顶和导带底的态密度主要由Cr-d和Ti-d层电子贡献;与未掺杂CrSi2相比,Cr11TiSi24的介电峰发生了红移,仅在1.33eV处有一个峰,而原位于4.53eV处的峰消失;吸收系数,反射率和光电导率明显降低.  相似文献   

16.
采用基于密度泛函理论的第一性原理分析方法的CASTEP软件,计算了Ni、C单掺杂和共掺杂SnO2的晶格参数、能带结构、电子态密度和布局,结果表明:单掺杂和共掺杂均使得晶胞体积略微增大,禁带减小,且仍属于直接带隙半导体,在价带顶和导带底产生杂质能级,其中Ni-C共掺杂时禁带最小,杂质能级最多,电子跃迁需要的能量更小,导电性也就最好.共掺杂时费米能级附近的峰值有所减小,局域性降低,原子间的成键结合力更强,使得SnO2材料也更加稳定.  相似文献   

17.
顾牡  林玲  刘波  刘小林  黄世明  倪晨 《物理学报》2010,59(4):2836-2842
运用基于密度泛函理论的赝势平面波方法计算了M’型GdTaO4的电子结构.结果表明:M’型GdTaO4价带顶主要由O-2p电子构成,导带底由Ta-5d的e轨道电子构成;当Ueff=8 eV时,自旋向上和自旋向下的Gd-4f电子分别局域于价带顶以下627 eV和导带底以上301 eV处;计算得到M’型GdTaO4的折射率为224,与应用半经验的Gladstone-Dale关系得到的结果符合得很好. 关键词: M’型钽酸钆 第一性原理计算 能带 态密度  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号