首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Recent studies have demonstrated stable generation of power from pure ammonia combustion in a micro gas turbine (MGT) with a high combustion efficiency, thus overcoming some of the challenges that discouraged such applications of ammonia in the past. However, achievement of low NOx emission from ammonia combustors remains an important challenge. In this study, combustion techniques and combustor design for efficient combustion and low NOx emission from an ammonia MGT swirl combustor are proposed. The effects of fuel injection angle, combustor inlet temperature, equivalence ratio, and ambient pressure on flame stabilization and emissions were investigated in a laboratory high pressure combustion chamber. An FTIR gas analyser was employed in analysing the exhaust gases. Numerical modeling using OpenFOAM was done to better understand the dependence of NO emissions on the equivalence ratio. The result show that inclined fuel injection as opposed to vertical injection along the combustor central axis resulted to improved flame stability, and lower NH3 and NOx emissions. Numerical and experimental results showed that a control of the equivalence ratio upstream of the combustor is critical for low NOx emission in a rich-lean ammonia combustor. NO emission had a minimum value at an upstream equivalence ratio of 1.10 in the experiments. Furthermore, NO emission was found to decrease with ambient pressure, especially for premixed combustion. For the rich-lean combustion strategy employed in this study, lower NOx emission was recorded in premixed combustion than in non-premixed combustion indicating the importance of mixture uniformity for low NOx emission from ammonia combustion. A prototype liner developed to enhance the control and uniformity of the equivalence ratio upstream of the combustor further improved ammonia combustion. With the proposed liner design, NOx emission of 42?ppmv and ammonia combustion efficiency of 99.5% were achieved at 0.3?MPa for fuel input power of 31.44?kW.  相似文献   

2.
The influence of wall heat loss on the emission characteristics of ammonia-air swirling flames has been investigated employing Planar Laser-Induced Fluorescence imaging of OH radicals and Fourier Transform Infrared spectrometry of the exhaust gases in combustors with insulated and uninsulated walls over a range of equivalence ratios, ?, and pressures up to 0.5 MPa. Strong influence of wall heat loss on the flames led to quenching of the flame front near the combustor wall at 0.1 MPa, resulting in large unburned NH3 emissions, and inhibited the stabilization of flames in the outer recirculating zone (ORZ). A decrease in heat loss effects with an increase in pressure promoted extension of the fuel-rich stabilization limit owing to increased recirculation of H2 from NH3 decomposition in the ORZ. The influence of wall heat loss resulted in emission trends that contradict already reported trends in literature. NO emissions were found to be substantially low while unburned NH3 and N2O emissions were high at fuel-lean conditions during single-stage combustion, with values such as 55 ppmv of NO, 580 ppmv of N2O and 4457 ppmv of NH3 at ? = 0.8. In addition, the response of the flame to wall heat loss as pressure increased was more important than the effects of pressure on fuel-NO emission, thereby leading to an increase in NO emission with pressure. It was found that a reduction in wall heat loss or a sufficiently long fluid residence time in the primary combustion zone is necessary for efficient control of NH3 and N2O emissions in two-stage rich-lean ammonia combustors, the latter being more effective for N2O in addition to NO control. This study demonstrates that the influence of wall heat loss should not be ignored in emissions measurements in NH3-air combustion, and also advances the understanding of previous studies on ammonia micro gas turbines.  相似文献   

3.
Compared to hydrocarbons, ammonia's low reactivity and higher NOx emissions limit its practical application. Consequently, its implementation in combustion systems requires a different combustor geometry, by adapting existing systems or developing new ones. This study investigates the flame stability, NO emissions, and flame structure of NH3/CH4/air premixed flames in a novel combustor comprising a double swirl burner. A lean premixed CH4/air mixture of equivalence ratio, Φout, was supplied to the outer swirl, while a NH3/CH4/Air mixture fed the inner swirl. The molar fraction of NH3 in the inner fuel blend, xNH3, was varied from 0 (pure CH4) to 1 (pure NH3) over far-lean to far-rich inner stream equivalence ratio, Φin. This new burner's stability map was established in terms of Φin versus xNH3 for different Φout. Then, NO emissions were measured versus Φin for various xNH3 and Φout. Finally, based on the NO emissions, eight flames were down-selected for in-flame measurements, which included temperature and OH-PLIF. The stability measurements revealed that increasing xNH3 modifies the stability map by increasing the lean blowout limits and narrowing the flashback region. At Φout ≥ 0.6, a stable flame was achieved for a pure inner NH3/air mixture. Low NO emissions were achieved in this burner configuration at xNH3=1 by either enriching or far-leaning Φin. Enriching Φin led to a steep decrease in NO concentrations. However, to achieve low NO concentrations, precise control of Φout was needed. At Φin=1.4, 220 ppm NO at Φout=0.7 versus 690 at Φout=0.6 was measured. Moreover, substantially enriching Φin>1.2 led to a slight decrease in measured NO. Generally, the OH-PLIF images revealed a conical OH-layer at the burner exit. Certain flame conditions created OH-pockets inside the conical structure or formed a V-shaped OH-layer far downstream. This change in flame structure was found to impact NO emissions strongly.  相似文献   

4.
This study examined the effects of OH concentration and temperature on the NO emission characteristics of turbulent, non-premixed methane (CH4)/ammonia (NH3)/air swirl flames in two-stage combustors at high pressure. Emission data were obtained using large-eddy simulations with a finite-rate chemistry method from model flames based on the energy fraction of NH3 (ENH3) in CH4/NH3 mixtures. Although NO emissions at the combustor exit were found to be significantly higher than those generated by CH4/air and NH3/air flames under both lean and stoichiometric primary zone conditions, these emissions could be lowered to approximately 300 ppm by employing far-rich equivalence ratios (?) of 1.3 to 1.4 in the primary zone. This effect was possibly due to the lower OH concentrations under far-rich conditions. An analysis of local flame characteristics using a newly developed mixture fraction equation for CH4/NH3/air flames indicated that the local temperature and NO and OH concentration distributions with local ? were qualitatively similar to those in NH3/air flames. That is, the maximum local NO and OH concentrations appeared at local ? of 0.9, although the maximum temperature was observed at local ? of 1.0. Both the temperature and OH concentration were found to gradually decrease with the partial replacement of CH4 with NH3. Consequently, NO emissions from CH4/NH3 flames were maximized at ENH3 in the range of 20% to 30%, after which the emissions decreased. Above 2100 K, the NO emissions from CH4/NH3 flames increased exponentially with temperature, which was not observed in NH3/air flames because of the lower flame temperatures in the latter. But, the maximum NO concentration in CH4/NH3 flames was occurred at a temperature slightly below the maximum temperature, just as in NH3/air flames. The apparent exponential increase in NO emissions from CH4/NH3 flames is attributed to a similar trend in the OH concentration at high temperatures.  相似文献   

5.
Ammonia (NH3) is recognized as a carbon-free hydrogen-carrier fuel with a high content of hydrogen atoms per unit volume. Recently, ammonia has received increasing attention as a promising alternative fuel for internal combustion engine and gas turbine applications. However, the viability of ammonia fueling future combustion devices has several barriers to overcome. To overcome the challenge of its low reactivity, it is proposed to blend it with a high-reactivity fuel. In this work, we have investigated the combustion characteristics of ammonia/diethyl ether (NH3/DEE) blends using a rapid compression machine (RCM) and a constant volume spherical reactor (CVSR). Ignition delay times (IDTs) of NH3/DEE blends were measured using the RCM over a temperature range of 620 to 942 K, pressures near 20 and 40 bar, equivalence ratios (Φ) of 1 and 0.5, and a range of mole fractions of DEE, χDEE, from 0.05 to 0.2 (DEE/NH3 = 5 – 20%). Laminar burning velocities of NH3/DEE premixed flames were measured using the CVSR at 298 K, 1 bar, Φ of 0.9 to 1.3, and χDEE from 0.1 to 0.4. Our results indicate that DEE promotes the reactivity of fuel blends resulting in significant shortening of the ignition delay times of ammonia under RCM conditions. IDTs expectedly exhibited strong dependence on pressure and equivalence ratio for a given blend. Laminar burning velocity was found to increase with increasing fraction of DEE. The burnt gas Markstein length increased with equivalence ratio for χDEE = 0.1 as seen in NH3-air flames, while the opposite evolution of Markstein length was observed with Φ for 0.1 < χDEE ≤ 0.4, as observed in isooctane-air flames. A detailed chemical kinetics model was assembled to analyze and understand the combustion characteristics of NH3/DEE blends.  相似文献   

6.
Utilizing ammonia as a co-firing fuel to replace amounts of fossil fuel seems a feasible solution to reduce carbon emissions in existing pulverized coal-fired power plants. However, there are some problems needed to be considered when treating ammonia as a fuel, such as low flame stability, low combustion efficiency, and high NOx emission. In this study, the co-firing characteristics of ammonia with pulverized coal are studied in a drop tube furnace with staged combustion strategy. Results showed that staged combustion would play a key role in reducing NOx emissions by reducing the production of char-NOx and fuel(NH3)-NOx simultaneously. Furthermore, the effects of different ammonia co-firing methods on the flue gas properties and unburned carbon contents were compared to achieve both efficient combustion and low NOx emission. It was found that when ammonia was injected into 300 mm downstream under the condition of 20% co-firing, lower NOx emission and unburnt carbon content than those of pure coal combustion can be achieved. This is probably caused by a combined effect of a high local equivalence ratio of NH3/air and the prominent denitration effect of NH3 in the vicinity of the NH3 downstream injection location. In addition, NOx emissions can be kept at approximately the same level as coal combustion when the co-firing ratio is below 30%. And the influence of reaction temperature on NOx emissions is closely associated with the denitration efficiency of the NH3. Almost no ammonia slip has been detected for any injection methods and co-firing ratio in the studied conditions. Thus, it can be confirmed that ammonia can be used as an alternative fuel to realize CO2 reduction without extensive retrofitting works. And the NOx emission can be reduced by producing a locally NH3 flame zone with a high equivalence ratio as well as ensuring adequate residence time.  相似文献   

7.
With the growing attention on ammonia (NH3) combustion, understanding NH3 and nitric oxide (NO) interaction at temperatures higher than DeNOx temperature region or even flame temperature becomes a new research need. In this work, the outwardly propagation spherical flame method was used to investigate the laminar flame propagation of NH3/NO/N2 mixtures and constrain the uncertainties of the specific kinetics. The present experiments were conducted at initial pressure of 1 atm, temperature of 298 K and equivalence ratios from 1.1 to 1.9. A kinetic model of NH3/NO combustion was updated from our previous work. Compared with several previous models, the present model can reasonably reproduce the laminar burning velocity data measured in this work and speciation data in literature. Based on model analyses, the interaction of NH3 and NO was thoroughly investigated. As both the oxidizer and a carrier of nitrogen element, NO frequently reacts with different decomposition products of NH3 including NH2, NH and NNH, and converts nitrogen element to the final product N2. It is found that the laminar burning velocity experiment of NH3/NO/N2 mixtures using the outwardly propagating spherical flame method can provide highly sensitive validation targets for the kinetics in NH3 and NO interaction.  相似文献   

8.
Ammonia (NH3) direct combustion is attracting attention for energy utilization without CO2 emissions, but fundamental knowledge related to ammonia combustion is still insufficient. This study was designed to examine effects of radiation heat loss on laminar ammonia/air premixed flames because of their very low flame speeds. After numerical simulations for 1-D planar flames with and without radiation heat loss modeled by the optically thin model were conducted, effects of radiation heat loss on flame speeds, flame structure and emissions were investigated. Simulations were also conducted for methane/air mixtures as a reference. Effects of radiation heat loss on flame speeds were strong only near the flammability limits for methane, but were strong over widely diverse equivalence ratios for ammonia. The lower radiative flame temperature suppressed the thermal decomposition of unburned ammonia to hydrogen (H2) at rich conditions. The equivalence ratio for a low emission window of ammonia and nitric oxide (NO) in the radiative condition shifted to a lower value than that in the adiabatic condition.  相似文献   

9.
Coal splitting and staging is a promising technology to reduce nitrogen oxides (NOx) emissions from coal combustion through transforming nitrogenous pollutants into environmentally friendly gasses such as nitrogen (N2). During this process, the nitrogenous species in pyrolysis gas play a dominant role in NOx reduction. In this research, a series of reactive force field (ReaxFF) molecular dynamics (MD) simulations are conducted to investigate the fundamental reaction mechanisms of NO removal by nitrogen-containing species (HCN and NH3) in coal pyrolysis gas under various temperatures. The effects of temperature on the process and mechanisms of NO consumption and N2 formation are illustrated during NO reduction with HCN and NH3, respectively. Additionally, we compare the performance of NO reduction by HCN and NH3 and propose control strategies for the pyrolysis and reburn processes. The study provides new insights into the mechanisms of the NO reduction with nitrogen-containing species in coal pyrolysis gas, which may help optimize the operating parameters of the splitting and staging processes to decrease NOx emissions during coal combustion.  相似文献   

10.
Chemical energy vectors will play a crucial role in the transition of the global energy system, due to their essential advantages in storing energy in form of gaseous, liquid, or solid fuels. Ammonia (NH3) has been identified as a highly promising candidate, as it is carbon-free, can be stored at moderate pressures, and already has a developed distribution infrastructure. As a fuel NH3 has poor combustion properties that can be improved by the addition of hydrogen, which can be obtained energy-efficiently by partially cracking ammonia into hydrogen (H2) and nitrogen (N2) prior to the combustion process. The resulting NH3/H2/N2 blend leads to significantly improved flame stability and resilience to strain-induced blow-out, despite similar laminar flame properties compared to equivalent methane/air flames. This study reports the first measurements of extinction strain rates, measured using the premixed twin-flame configuration in a laminar opposed jet burner, for two NH3/H2/N2 blends over a range of equivalence ratios. Local strain rates are measured using particle tracking velocimetry (PTV) and are related to the inflow conditions, such that the local strain rate at the extinction point can be approximated. The results are compared with 1D-simulations using three recent kinetic mechanisms for ammonia oxidation. By relating the extinction strain rates to laminar flame properties of the unstretched flame, a comparison of the extinction behaviour of CH4 and NH3/H2/N2 blends can be made. For lean mixtures, NH3/H2/N2-air flames show a significant higher extinction resistance in comparison to CH4/air. In addition, a strong non-linear dependence between the resistance to extinction and equivalence ratio for NH3/H2/N2 blends is observed.  相似文献   

11.
We experimentally investigate the dynamic behavior of the combustion instability in a lean premixed gas-turbine combustor from the viewpoint of nonlinear dynamics. A nonlinear time series analysis in combination with a surrogate data method clearly reveals that as the equivalence ratio increases, the dynamic behavior of the combustion instability undergoes a significant transition from stochastic fluctuation to periodic oscillation through low-dimensional chaotic oscillation. We also show that a nonlinear forecasting method is useful for predicting the short-term dynamic behavior of the combustion instability in a lean premixed gas-turbine combustor, which has not been addressed in the fields of combustion science and physics.  相似文献   

12.
Co-firing methane (CH4) and ammonia (NH3) has attracted growing concerns as a feasible greenhouse gas reduction strategy in gas turbine-based power generation, which raises the need to better understand the interaction of methane and nitric oxide (NO) under flame conditions. In this work, laminar flame propagation of CH4/NO mixtures at initial pressure (Pu) of 1 atm, initial temperature (Tu) of 298 K and equivalence ratios of 0.4–1.8 was experimentally investigated using a constant-volume combustion vessel. Laminar burning velocities (LBVs) and Markstein lengths were experimentally determined. A kinetic model of CH4/NO combustion was developed with rate constants of several important reactions updated, presenting reasonable predictions on the measured LBVs of CH4/NO mixtures. The modeling analyses reveal that the reduction of NO can proceed through two mechanisms, i.e. the hydrocarbon NO reduction mechanism and non-hydrocarbon NO reduction mechanism. Among the two mechanisms, the non-hydrocarbon NO reduction mechanism which includes reactions NO+H = N+OH, NO+O = N + O2 and NO+N = N2+O has a higher contribution to NO reduction at the equivalence ratio of 0.6, while the hydrocarbon NO reduction mechanism with hydrocyanic acid (HCN) as the key intermediate plays a more important role at the equivalence ratio of 1.8. NO+H = N+OH and CH3+NOHCN+H2O are found to be the two most sensitive reactions to promote the flame propagation, while the LBVs measured in this work are demonstrated to provide strong constraint for these reactions. Furthermore, previous CH4/O2/NO oxidation data measured in flow reactor and rapid compression machine were also simulated, which provides extended validation of the present model over wider conditions.  相似文献   

13.
In this study, a bespoke single-stage swirl burner was used to experimentally investigate the effects of residence time on emissions from premixed ammonia-methane-air flames. The residence time was altered in two ways: by modifying the combustion chamber's length or by modifying the swirl number. Exhaust emissions of O2, CO2, CO, NO, NO2, and N2O were measured at an absolute pressure of 2 bar for equivalence ratios between 0.50 and 0.95 and ammonia fractions in the fuel blend between 0 and 100%. Spatial distributions of NO and OH radicals were also imaged using PLIF inside the combustion chamber at different heights above the nozzle. Data shows that increasing residence time can further advance chemical reactions, as evidenced by a reduction in O2 concentration in the exhaust. Increasing the swirl number reduces emissions of NO, NO2, and N2O more efficiently than tripling the chamber's length. However, a decrease in the combustion efficiency may be responsible for a fraction of this NOx reduction when the swirl number is increased for some equivalence ratios. NO emissions are not modified when the chamber's length is increased, which is consistent with the fact that the NO-LIF signal does not decay when the distance from the nozzle increases. Therefore, NO formation is somehow restricted to within the main reaction zone of the swirling flame, that is, the zone whose height does not exceed 60 mm for this burner. Conversely, tripling the chamber's length reduces the concentrations of NO2 and N2O. This reduction is not reflected in a measurable increase in NO concentration because NO is present in much larger quantities than NO2 and N2O in flames examined here. Consistent with the fact that OH promotes NO formation via fuel-NOx pathways, a positive correlation is found between NO- and OH-LIF intensities.  相似文献   

14.
15.
This work presents a study of a magnesium/air combustion process in the context of innovative zero carbon dioxide (CO2) energy carriers for reducing global warming effects. In order to analyze more deeply the confined combustion of magnesium under fluctuating overpressure conditions (0 to 24 hPa) and the generated gaseous by-products, magnesium/air flames have been realized in a combustion chamber with a conical bluff-body as flame holder and different contraction ratios diaphragms at the exit duct. Sieved magnesium samples with two size-fractions were tested: 20–50?µm and 50–70?µm. The gaseous emissions of nitrogen oxides (NOx) and dioxygen (O2) were analyzed with on-line infrared, ultraviolet and paramagnetic analyzers. A flame pulsating behavior was clearly observed from light emission intensity (monitored by a photodiode) and pressure fluctuations (monitored by a pressure sensor); the frequencies obtained ranged between 3 and 10?Hz. The frequency of the pulsation exhibited strong dependence on the geometric configuration of the chamber: a contraction diaphragm divided by two the frequency level of the fluctuations in the studied range of maximum overpressure. Such fluctuations may probably be the consequence of periodic perturbations of the recirculation zone behind the bluff-body. These periodic perturbations are themselves caused by strong periodic overpressure variations due to stiff contraction downstream responding to gas velocity fluctuations. This feed-back-loop mechanism was considered in this study. NOx emissions produced through the thermal pathway were analyzed for equivalence ratios ranging from 0.29 to 1. The representation of NOx versus equivalence ratio exhibited a parabolic shape with a maximum for an equivalence ratio of 0.4. Moreover, NOx emissions of this metal combustor have shown a similar order of magnitude than current internal combustion engines.  相似文献   

16.
High-alkali coal contains relatively high contents of alkali metals, which can be usually released in the form of gaseous chlorides and hydroxides during combustion. The effect of alkali metals on NO formation is analyzed in an electrical heated drop-tube furnace at 800–1200 °C during coal combustion. Based on experiments and simulations, the mechanisms underlying the effects of Na salts on NO emission are clarified in CO/NH3/O2/H2O/Na additive (NaCl, Na2SO4, and NaAc) systems. The results indicate that the yield of NO initially increases and then decreases as the furnace temperature increased. As the temperature increased from 800 to 1000 °C, NO precursors (HCN and NH3) undergo accelerated oxidation to form NO. When the furnace temperature is greater than 1000 °C, due to the rapid precipitation of volatiles, a local reducing atmosphere is present around the pulverized coal particles, which inhibits NO formation. NaCl and NaAc addition significantly inhibit NO formation. However, the inhibitory effect is weakened at higher temperatures (>1000 °C). The Na2SO4 additive exerts little effect on NO generation during combustion because of its stable chemical properties. The same conclusion is also obtained from gaseous experiments showing that NaCl and NaAc significantly inhibit NH3 oxidation to form NO. Based on the results of calculations, NaCl and NaAc addition inhibits NO formation by promoting the recombination of H, O and OH and reducing the concentrations of radicals. According to the analysis of chemical reactions, the effect of NaCl and NaAc on NO formation is mainly determined by the competitive relationships among multiple reactions.  相似文献   

17.
Oxy-coal combustion with pressurized fluidized beds has recently emerged as a promising carbon capture and storage (CCS) technology for coal-fired power plants. Although a large number of energy efficiency analyses have shown that an increase in combustion pressure can further increase the net plant efficiency, there are few experimental studies of pressurized oxy-coal combustion conducted on fluidized bed combustors/boilers with continuous coal feeding. In this study, oxy-coal combustion experiments with lignite and anthracite were conducted with a 30 kWth pressurized fluidized bed combustor within the pressure range of 0.1 MPa to 0.4 MPa. The investigation focused on the elucidation of the impacts of combustion pressure on the combustion performance, pollutant emissions and desulfurization of oxy-coal combustion in fluidized beds. The results showed that an increase in pressure increased the combustion efficiency and combustion rate of coal particles, and the promoting effect of pressure increase was more significant for the high rank coal with smaller particle size and the high O2 concentration atmosphere. For both coals, NOx emissions decreased with pressure but N2O emissions increased with pressure and accounted for a considerable part of the nitrogen oxide pollutants under high pressure oxy-coal combustion conditions. The pressure had insignificant impact on the SO2 emissions of oxy-coal combustion but an increase in pressure enhanced the direct desulfurization of limestone.  相似文献   

18.
One of the main concerns regarding ammonia combustion is its tendency to yield high nitric oxide (NO) emissions. Burning ammonia under slightly rich conditions reduces the NO mole fraction to a low level, but the penalties are poor combustion efficiency and unburnt ammonia. As an alternative solution, this paper reports the experimental investigation of premixed swirl flames fueled with ammonia-hydrogen mixtures under very-lean to stoichiometric conditions. A gas analyzer was used to measure the NO mole fraction in the flame and post flame regions, and it was found that low NO emissions (as low as 100 ppm) in the exhaust were achieved under very lean conditions (? ≈ 0.40). Low NO emission was also possible at higher equivalence ratios, e.g. ? = 0.65, for very large ammonia fuel fractions (XNH3 > 0.90). 1-D flame simulations were performed to elaborate on experimental findings and clarify the observations of the chemical kinetics. In addition, images of OH* chemiluminescence intensity were captured to identify the flame structure. It was found that, for some conditions, the OH* chemiluminescence intensity can be used as a proxy for the NO mole fraction. A monotonic relationship was discovered between OH* chemiluminescence intensities and NO mole fraction for a wide range of ammonia-hydrogen blends (0.40 < ? < 0.90 and 0.25 < XNH3 < 0.90), making it possible to use the low-cost OH* chemiluminescence technique to qualify NO emission of flames fueled with hydrogen-enriched ammonia blends.  相似文献   

19.
20.
Co-firing ammonia (NH3) and hydrogen (H2) or H2-rich fuel and partially cracking NH3 are promising non-carbon combustion techniques for gas turbines and marine engines, raising a growing need to understand the interactions of H2 and nitric oxide (NO) as well as the non-hydrocarbon nitrogen oxides (NOX) reduction mechanism under flame conditions. In this work, the outwardly propagating spherical flame method was used to investigate the laminar flame propagation of H2/NO and H2/NO/nitrogen (N2) mixtures at initial pressure (Pu) of 2 atm, initial temperature (Tu) of 298 K and equivalence ratios of 0.2-1.4. The laminar burning velocities (LBVs) of H2/NO mixtures are generally 5-10 times lower than those of H2/air mixtures, while the dilution of N2 can dramatically inhibit the laminar flame propagation. A kinetic model of H2/NO combustion was constructed and validated against the new data in this work and other types of experimental data in literature. The modeling analyses reveal that NO+H=N+OH becomes the most important chain-branching reaction in H2/NO reaction system, while the LBV data of H2/NO mixtures in this work can provide highly sensitive validation targets for the kinetics in H2 and NO interactions. Furthermore, the NO reduction to N2 mainly proceeds through NO+N=N2+O under various H2/NO ratios, and NO+O=N+O2 is found to have a significant contribution to NO reduction under NO-rich conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号