首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Co-firing ammonia (NH3) and hydrogen (H2) or H2-rich fuel and partially cracking NH3 are promising non-carbon combustion techniques for gas turbines and marine engines, raising a growing need to understand the interactions of H2 and nitric oxide (NO) as well as the non-hydrocarbon nitrogen oxides (NOX) reduction mechanism under flame conditions. In this work, the outwardly propagating spherical flame method was used to investigate the laminar flame propagation of H2/NO and H2/NO/nitrogen (N2) mixtures at initial pressure (Pu) of 2 atm, initial temperature (Tu) of 298 K and equivalence ratios of 0.2-1.4. The laminar burning velocities (LBVs) of H2/NO mixtures are generally 5-10 times lower than those of H2/air mixtures, while the dilution of N2 can dramatically inhibit the laminar flame propagation. A kinetic model of H2/NO combustion was constructed and validated against the new data in this work and other types of experimental data in literature. The modeling analyses reveal that NO+H=N+OH becomes the most important chain-branching reaction in H2/NO reaction system, while the LBV data of H2/NO mixtures in this work can provide highly sensitive validation targets for the kinetics in H2 and NO interactions. Furthermore, the NO reduction to N2 mainly proceeds through NO+N=N2+O under various H2/NO ratios, and NO+O=N+O2 is found to have a significant contribution to NO reduction under NO-rich conditions.  相似文献   

2.
In order to achieve carbon neutrality, the use of ammonia as a fuel for power generation is highly anticipated. The utilization of a binary fuel consisting of ammonia and hydrogen can address the weak flame characteristics of ammonia. In this study, the product gas characteristics of ammonia/hydrogen/air premixed laminar flames stabilized in a stagnation flow were experimentally and numerically investigated for various equivalence ratios for the first time. A trade-off relationship between NO and unburnt ammonia was observed at slightly rich conditions. At lean conditions, NO reached a maximum value of 8,700 ppm, which was larger than that of pure ammonia/air flames. The mole fraction of nitrous oxide (N2O) which has large global warming potential rapidly increased around the equivalence ratio of 0.6, which was attributed to the effect of a decrease in flame temperature downstream of the reaction zone owing to heat loss to the stagnation wall. To understand this effect further, numerical simulations of ammonia/hydrogen/air flames were conducted using the stagnation flame model for various equivalence ratios and stagnation wall temperatures. The results show that the important reactions for N2O production and reductions are NH +NO = N2O + H, N2O + H = N2 + OH, and N2O (+M) = N2 + O (+M). A decrease in flame temperature in the post flame region inhibited N2O reduction through N2O (+M) = N2 + O (+M) because this reaction has a large temperature dependence, and thus N2O was detected as a product gas. N2O is reduced through N2O (+M) = N2 + O (+M) in the post flame region if the stagnation wall temperature is sufficiently high. On the other hand, it was clarified that an increase in equivalence ratio enhances H radical production and promotes N2O reduction by H radical through the reaction of N2O + H = N2 + OH.  相似文献   

3.
This work reports an experimental and kinetic modeling investigation on the laminar flame propagation of acetone and 2-butanone at normal to high pressures. The experiments were performed in a high-pressure constant-volume cylindrical combustion vessel at 1–10 atm, 423 K and equivalence ratios of 0.7–1.5. A kinetic model of acetone and 2-butanone combustion was developed from our recent pentanone model [Li et al., Proc. Combust. Inst. 38 (2021) 2135–2142] and validated against experimental data in this work and in literature. Together with our recently reported data of 3-pentanone, remarkable fuel molecular structure effects were observed in the laminar flame propagation of the three C3C5 ketones. The laminar burning velocity increases in the order of acetone, 2-butanone and 3-pentanone, while the pressure effects in laminar burning velocity reduces in the same order. Modeling analysis was performed to provide insight into the key pathways in flames of acetone and 2-butanone. The differences in radical pools are concluded to be responsible for the observed fuel molecular structure effects on laminar burning velocity. The favored formation of methyl in acetone flames inhibits its reactivity and leads to the slowest laminar flame propagation, while the easiest formation of ethyl in 3-pentanone flames results in the highest reactivity and fastest laminar flame propagation. Furthermore, the LBVs of acetone and 3-pentanone exhibit the strongest and weakest pressure effects respectively, which can be attributed to the influence of fuel molecular structures through two crucial pressure-dependent reactions CH3 + H (+M) = CH4 (+M) and C2H4 + H (+M) = C2H5 (+M).  相似文献   

4.
The chemical and thermal structures of flame of composite pseudo-propellants based on cyclic nitramines (HMX, RDX) and azide polymers (GAP and BAMO–AMMO copolymer) were investigated at a pressure of 1.0 MPa by molecular beam mass spectrometry and a microthermocouple technique. Eleven species H2, H2O, HCN, CO, CO2, N2, N2O, CH2O, NO, NO2, and nitramine vapor (RDXv or HMXv), were identified, and their concentration profiles were measured in HMX/GAP and RDX/GAP pseudo-propellant flames at a pressure of 1 MPa. Two main zones of chemical reactions in the flame of nitramine/GAP pseudo-propellants were found. In the first, narrow, zone 0.1 mm wide (adjacent to the burning surface), complete consumption of nitramine vapor and NO2 with the formation of NO, HCN, CO, H2, and N2 occurs. In the second, wider high-temperature zone, oxidation of HCN and CH2O by NO and N2O with the subsequent formation of CO, H2, and N2 takes place. The leading reactions in the high-temperature zone of flame of nitramine/GAP pseudo-propellants are the same as in the case of pure nitramines. In the case of nitramine/BAMO–AMMO pseudo-propellants a presence of carbonaceous particles on the burning surface did not allow us to analyze the zone adjacent to the burning surface, therefore only one flame zone was found. Temperature profiles in the combustion wave of nitramine/azide polymer pseudo-propellants were measured at 1 MPa. The data obtained can be used to develop and validate a self-sustain combustion model for pseudo-propellants based on nitramines and azide polymers.  相似文献   

5.
We investigate the effects of varying the degree of burner stabilization on Fenimore NO formation in fuel-rich low-pressure flat CH4/O2/N2 flames. Towards this end, axial profiles of flame temperature and OH, NO and CH mole fractions are measured using laser-induced fluorescence (LIF). The experiments are performed at equivalence ratios between 1.3 and 1.5. The flame temperature is seen to decrease by 200-300 K, with a concomitant decrease in OH mole fraction, upon reducing the total flow rate from 5 to 3 L/min, thus increasing stabilization. At equivalence ratios between 1.3 and 1.5, this decrease in flow rate lowers the maximum CH mole fraction by a factor of 2, and the NO mole fraction by ∼40% in all flames studied. Integrating the reaction rate for CH + N2 to estimate Fenimore NO formation, using the rate coefficient in GRI-Mech 3.0, and the measured temperatures and CH profiles show very good agreement with the measured NO mole fraction for ? = 1.3 and 1.4, supporting the current choice for this rate. This agreement also shows that the increase in residence time caused by increased stabilization is an important factor in the ultimate impact of the changes in CH mole fraction on NO formation. The results at ? = 1.5 suggest that substantial quantities of fixed nitrogen species, e.g., HCN, are only slowly oxidized in the post-flame zone under these conditions, leading to a significant discrepancy between the measured NO mole fraction and that obtained by integrating over the CH profile. Detailed calculations using GRI-Mech 3.0 predict the experimental results at ? = 1.3 nearly quantitatively, but show increasing differences with the measurements for both CH and NO profiles with increasing equivalence ratio.  相似文献   

6.
The effect of CO addition on extinction and NO x formation in lean premixed counterflow CH4/air flames was investigated by numerical simulation. Detailed chemistry and complex thermal and transport properties were employed. A method that gradually switched off the initial reactions of NO formation from different routes was used to analyse the variation of NO formation mechanism. The results indicate that the addition of certain amount of CO increases the strain extinction limits and reduces the radiation extinction limits. As a result, the lean flammability limit of CH4/air premixed flame is extended to leaner side by the addition of CO. The formation of NO in a flame is increased with the addition of CO at a constant equivalence ratio. For an ultra-lean flame, the increase in the formation of NO is mainly because of the increase in the contribution from the NNH intermediate route, while for a near stoichiometric flame, this increase is mainly attributable to the rise in the contribution from the thermal route. With the fraction of added CO being gradually increased, the formation of NO2 in a flame first decreases and then increases at a given equivalence ratio. The addition of CO reduces the formation N2O in an ultra-lean flame, while affects little on the formation of N2O in a near stoichiometric flame.  相似文献   

7.
This work reports the experimental results of n-propylamine (NPA) oxidation in a jet-stirred reactor at 1 atm within 625–875 K, equivalence ratios from 0.5 to 2.0. Oxidation products and intermediates were identified and quantified with synchrotron vacuum ultraviolet photoionization mass spectrometry. Apart from various hydrocarbons, oxygenated and nitrogenous species reported in previous studies of amines, several intermediates were newly detected, including formamide (H2NCHO), nitromethane (CH3NO2), nitrous acid (HNO2), 2-propen-1-ol (C3H5OH) and 2-propenal (C2H3CHO). A detailed kinetic model consisting of 277 species and 2314 reactions was developed with reasonable predictions against the measured data. The rate-of-production and sensitivity analyses results show that NPA oxidation at low temperatures is dominated by the reaction with HO2. Particular attention was paid to the main oxidation product HCN, because its formation is affected by both fuel structure and reaction temperature. The equivalence ratio changes have an opposite effect on HCN concentration in NPA oxidation compared with the pyrrole oxidation and ethylamine flame. In the current study, the peak mole fraction of HCN decreases with increasing equivalence ratio, because the formation of CN triple bond in HCN requires successive H-abstractions, dominantly controlled by the concentrations of OH/HO2 radicals and O2. In addition, a comparison between the experimental results of NPA oxidation and pyrolysis was performed to illustrate the effect of O2 concentration on reaction routes. Current results provide a preliminary insight into the combustion kinetics of more complicated aliphatic amines.  相似文献   

8.
Compared to hydrocarbons, ammonia's low reactivity and higher NOx emissions limit its practical application. Consequently, its implementation in combustion systems requires a different combustor geometry, by adapting existing systems or developing new ones. This study investigates the flame stability, NO emissions, and flame structure of NH3/CH4/air premixed flames in a novel combustor comprising a double swirl burner. A lean premixed CH4/air mixture of equivalence ratio, Φout, was supplied to the outer swirl, while a NH3/CH4/Air mixture fed the inner swirl. The molar fraction of NH3 in the inner fuel blend, xNH3, was varied from 0 (pure CH4) to 1 (pure NH3) over far-lean to far-rich inner stream equivalence ratio, Φin. This new burner's stability map was established in terms of Φin versus xNH3 for different Φout. Then, NO emissions were measured versus Φin for various xNH3 and Φout. Finally, based on the NO emissions, eight flames were down-selected for in-flame measurements, which included temperature and OH-PLIF. The stability measurements revealed that increasing xNH3 modifies the stability map by increasing the lean blowout limits and narrowing the flashback region. At Φout ≥ 0.6, a stable flame was achieved for a pure inner NH3/air mixture. Low NO emissions were achieved in this burner configuration at xNH3=1 by either enriching or far-leaning Φin. Enriching Φin led to a steep decrease in NO concentrations. However, to achieve low NO concentrations, precise control of Φout was needed. At Φin=1.4, 220 ppm NO at Φout=0.7 versus 690 at Φout=0.6 was measured. Moreover, substantially enriching Φin>1.2 led to a slight decrease in measured NO. Generally, the OH-PLIF images revealed a conical OH-layer at the burner exit. Certain flame conditions created OH-pockets inside the conical structure or formed a V-shaped OH-layer far downstream. This change in flame structure was found to impact NO emissions strongly.  相似文献   

9.
Oxymethylene ethers (OMEn) are an important family of e-fuels that can be produced sustainably from carbon dioxide and hydrogen via renewable electricity. In this work, laminar flame propagation of dimethyl ether (DME, which can be deemed as OME0), dimethoxymethane (OME1) and methoxy(methoxymethoxy)methane (OME2) was investigated in a constant-volume cylindrical combustion vessel. Laminar burning velocities (LBVs) of the three fuels were derived at 423 K, 1–10 atm and equivalence ratios of 0.7–1.5. A kinetic model for the high-temperature oxidation of the three fuels was developed with the isomerization and decomposition reactions of OME2 radicals theoretically calculated. Reasonable predictions can be achieved by the present model during the validation against the new data in this work and previous data in literature. Based on the modeling analysis, fuel-specific flame chemistry of the three fuels was analyzed, especially for the key formation pathways of major intermediates including formaldehyde, methyl formate and CH3. Special attentions were paid on the role of CH2O moiety, which is demonstrated by the variation of LBV and flame chemistry with the ratio (α) of CH2O moiety to the rest moiety in the fuel molecule (α = 1, 2 and 3 for DME, OME1 and OME2). It is observed from the experimental and simulated results that as α increases, the LBV profile has close peak values and peaks towards rich conditions, which results in the crossings of profiles and ascending LBV values under the richest conditions. Reactions involving fuel-specific radicals HCO and CH3 result in the peak shift of H profile and different LBV values, especially under the richest conditions. Furthermore, extended α values at 0 and ∞ by using methane and formaldehyde respectively were also explored with kinetic modeling to provide more insight into the effects of fuel molecular structures.  相似文献   

10.
To investigate (fuel-)lean/rich limits and essential stoichiometries, i.e., the borders of lean/rich combustion, one-dimensional steady computations with detailed chemistry for flame balls, counterflow flames, and stretch-free planar flames were conducted using a CH4/O2/Xe mixture that has been used in microgravity experiments. As continuous converged solutions were obtained under lean/rich conditions, it was suggested that the existence of flame ball not only under lean but also under rich condition. Flame radii and temperatures of flame balls decreased and increased toward the lean/rich limits from their maximum and minimum values, respectively. The lean limits were wider in the order of the flame ball, counterflow flame, and stretch-free planar flame. Therefore, the lean flammability limit corresponded to the lean limit of the flame ball in the mixture. Conversely, the rich limits were wider in the order of the counterflow flame, stretch-free planar flame, and flame ball. Thus, the rich flammability limit corresponded to the rich limit of the counterflow flame in the mixture. Essential stoichiometry, which represents the actual stoichiometry depending on the dominant transport in near-flame front, was not uniquely determined as conventional stoichiometry (ϕ = 1); it was located between the equivalence ratio of ϕ = 1 and ϕc, where ϕ c denotes the critical equivalence ratio is evaluated using the fuel and oxidizer Lewis number of a target mixture. The results indicated that the essential stoichiometry of the stretch-free planar flame corresponded to ϕ = 1, that of the flame ball corresponded to ϕ = ϕ c, and that of the stretched flame was located between ϕ = 1 and ϕ c depending on the stretch rate.  相似文献   

11.
The laminar burning velocities (LBVs) and cellular instability of 2-methyltetrahydrofuran (2-MTHF) were investigated at the unburned temperature of 423 K and pressures from 1 to 10 atm in a cylindrical constant-volume vessel. The LBVs of 2-MTHF/air flame exhibit a notably dropping with increasing pressure. The cellular instability analysis indicates that the critical flame radius of 2-MTHF/air mixture monotonically increases with increasing pressure and the flame surface suffers more badly cellularity under higher pressures. The critical flame radius exhibits non-monotonic variation versus ? and the most unstable flames appear at ? ≈ 1.3. It is observed that the measured Markstein length of 2-MTHF/air mixture decreases with increasing ? and Pu, leading to an earlier formation of wrinkling and cracks with respect to preferential-diffusional instability. Further investigation found that by using a mixture of 14.2% oxygen with 85.8% helium in place of air as bath gas at 10 atm can effectively suppress the cellular instability. Two recently developed models were used to simulate the experimental results and explore the chemical kinetic effects on LBV. Reaction path analysis reveals that the most consumption of 2-MTHF/air at stoichiometric conditions is through the abstraction of H-atom to form radical C5H9O-5. While the competitiveness of decomposition by CC scission yielding CH3 and tetrahydrofuran radical is relatively weak. Sensitivity analysis illustrates that small-species reactions show a controlling effect on LBV. The increasing pressure leads to an evident increase in the sensitivity coefficient of the recombination reaction H + O2 (+M)=HO2 (+M). The reduction of H atom concentration will cause competition to the initiation reaction H + O2 = O+OH. This could lower the overall oxidation rate and reduce the burning velocity.  相似文献   

12.
Derived cetane number (DCN), Research and Motor Octane Numbers (RON and MON) have been fundamentally analyzed using Quantitative Structure-Property Relationship (QSPR) regression models with key chemical functional groups. Both RON and MON exhibit strong sensitivities to the abundances of (CH2)n and benzyl-type groups but lack sensitivity to the CH3 group, most dominant in real gasolines. Residual and EGR gases contain NOx known to synergize with fuel autoignition chemistry. Two TRF mixtures having high and low aromatic content but sharing the same RON and MON values were used to evaluate NOx coupling effects. DCN measurements with NO addition were found to be strongly correlated with the abundance of the (CH2)n group. Similar experiments of 200 ppm NO in a Rapid Compression Machine show promotion (inhibition) of ignition for the high (low) aromatic TRF fuel. Kinetic modeling attributes the promotion to the NONO2 interconversion reactions, NO + HO2 = NO2 + OH, CH3 + NO2 = CH3O + NO and NO2 + H = NO + OH. The inhibitive effect relates specifically to low temperature kinetics and high NO loading conditions, leading to the formation of meta-stable species (e.g. CH3 + NO2 (+M) = CH3NO2 (+M)) that decelerate the rate of conversion of HO2 to more reactive OH radicals. The coupling of NO with real gasolines depends on chemical composition and temperature conditions not only encompassed by RON and MON criteria, but by the chemical functional group characteristics. The relevance of this finding to the significance of preferential vaporization of multi-component gasolines on low-speed pre-ignition (LSPI) is discussed. Within the context of chemical functional group distributions of five distillation cuts of a marketed ethanol-free gasoline determined by NMR spectroscopy, the analyses identify considerable variations of key functionalities with fuel distillation properties, indicating chemical kinetic autoignition behaviors that are dependent on preferential vaporization.  相似文献   

13.
A 1.5 m long turbulent-wake combustion vessel with a 0.15 m × 0.15 m cross-sectional area is proposed for spatiotemporal measurements of curvature, strain, dilatation and burning rates along a freely downward-propagating premixed flame interacting with a parallel row of staggered vortex pairs having both compression (negative) and extension (positive) strains simultaneously. The wanted wake is generated by rapidly withdrawing an electrically-controlled, horizontally-oriented sliding plate of 5 mm thickness for flame–wake interactions. Both rich and lean CH4/air flames at the equivalence ratios  = 1.4 and  = 0.7 with nearly the same laminar burning velocity are studied, where flame–wake interactions and their time-dependent velocity fields are obtained by high-speed, high-resolution DPIV and laser-tomography. Correlations among curvature, strain, stretch, and dilatation rates along wrinkled flame fronts at different times are measured and thus their influences on front propagation rates can be analyzed. It is found that strain-related effects have significant influence on front propagation rates of rich CH4/air (diffusionally stable) flames even when the curvature weights more in the total stretch than the strain rate does. The local propagation rates along the wrinkled flame front are more intense at negative strain rates corresponding to positive peak dilatation rates but the global propagation rate averaged along the rich flame front remains constant during all period of flame–wake interaction. For lean CH4/air (diffusionally unstable) flames, the curvature becomes a dominant parameter influencing the structure and propagation of the wrinkled flame front, where both local and global propagation rates increase significantly with time, showing unsteady flame propagation. These experimental results suggest that the theory of laminar flame stretch can be applicable to a more complex flame–wake interaction involving unsteadiness and multitudinous interactions between vortices.  相似文献   

14.
Modeling of nitromethane flame structure and burning behavior   总被引:1,自引:0,他引:1  
Nitromethane was investigated in this study due to the push for higher performance and reduced toxicity monopropellant. A comprehensive detailed model for its flame structure and linear regression rate was developed and validated with experimental data. The model considered one-dimensional behavior with surface vaporization and detailed gas-phase kinetics based on the RDX mechanism of Yetter et al. combined with the nitromethane decomposition mechanism of Glarborg, Bendtsen, and Miller, resulting in a mechanism consisting of 47 species and 250 elementary reactions. The predictive model was implemented using a custom FORTRAN code wrapping the CHEMKIN 4 PREMIX gas-phase solver coupled with the condensed-phase solution. Predicted burning rates using the model showed good agreement with measured rates up to 15 MPa. Calculated species and temperature profiles showed three distinct regions based upon the appearance and consumption of certain species. The first region was marked by decomposition of nitromethane, the second region by consumption of all intermediate species except CH4 and NO, and the third region by the rise to final temperature and species concentrations near the equilibrium values. Among the intermediate species, CH4 and NO had higher concentrations than those of CH2O, N2O, HNO, and HONO. CH4 served as fuel species and NO provided a portion of the oxidizer for the third-region reactions to reach equilibrium composition. Sensitivity analysis identified the importance of two elementary reactions involving HNO to the temperature profile, and therefore the burning rate. Although the absolute level of NH and HCO were low, they served as an important intermediate species transporting nitrogen and carbon, respectively, between other higher-concentration species. The calculated flame zone thickness is consistent with that measured by microthermocouples.  相似文献   

15.
Experimental measurements of the adiabatic burning velocity in neat and NO formation in CH4 + O2 + Ar flames doped with small amounts of N2O are presented. The oxygen content in the oxidizer was varied from 15 to 17%. Non-stretched flames were stabilized on a perforated plate burner at 1 atm. The Heat Flux method was used to determine burning velocities under conditions when the net heat loss of the flame is zero. Adiabatic burning velocities of methane + oxygen + argon mixtures were found in satisfactory agreement with the modeling. The NO concentrations in the flames doped with N2O (100 ppm in the argon stream before mixing) were measured in the burnt gases at a fixed distance from the burner using probe sampling. Axial profiles of [NO] were found insensitive to the downstream heat losses. Experimental dependencies of [NO] versus equivalence ratio had a maximum between φ = 1.1 and 1.2. Calculated concentrations of NO were in good agreement with the measurements. In lean flames calculated concentrations of NO strongly depends on the rate constant of reaction N2O + O=NO + NO if too high values proposed in the literature are employed. These new experimental data thus allowed for validation of the key reactions of the nitrous oxide mechanism of NO formation in flames.  相似文献   

16.
Ammonia is a promising alternative clean fuel due to its carbon-free character and high hydrogen density. However, the low reactivity of ammonia and the potential high NOx emissions hinder its applications. Blending methane into ammonia can effectively improve the reactivity of pure NH3. In addition, lean combustion, as a high-efficiency and low-pollution combustion technology, is an effective measure to control the potential increase in NOx emissions. In the present work, the ignition delay times (IDTs) of NH3/CH4 mixtures highly diluted in Ar (98%) with CH4 mole fractions of 0%, 10%, and 50% were measured in a shock tube at an equivalence ratio of 0.5, pressures of 1.75 and 10 bar and a temperature range of 1421 K - 2149 K. A newly comprehensive kinetic model (named as HUST-NH3 model) for the NH3/CH4 mixtures oxidation was developed based on our previous work. Four kinetic models, the HUST-NH3 model, Glarborg model [19], Okafor model [7], and CEU model [10], were evaluated against the ignition delay times, laminar flame speeds, and species profiles of pure ammonia and ammonia/methane mixtures from the present work and literature. The simulation results indicated that the HUST-NH3 model shows the best performance among the above four models. Kinetic analysis results indicated that the absence of NH3 + M = NH2 + H + M (R819) and N2H2 + M = H + NNH + M (R902) in the CEU model and Okafor model cause the deviations between the experimental and simulation results. The overestimation of the rate constants of NH2 + NO = NNH + OH (R838) in the Glarborg model is the main reason for the overprediction of the NH3 laminar flame speeds.  相似文献   

17.
An insight into the interaction between NO and Na-loaded char is essential to improve the catalytic ability of Na to NO reduction, which will be useful to lower NO emissions during thermal utilization of sodium-containing fuels. Here, the intrinsic kinetics mechanisms for the catalytic reduction of NO by Na-loaded char were discussed in details. Using density functional theory (DFT) calculations, possible reaction pathways were first obtained, followed by evaluation of the rate coefficients through transition state theory (TST) calculations. On this basis, the analyses of both sensitivity and rate of products (ROP) were performed to illustrate the intrinsic kinetic mechanism for the NO reduction by Na-loaded char in a certain combustion condition, with an emphasis on the effects of temperature and NO-to-CO stoichiometric ratio. Results indicated that the catalytic active center –ONa plays an important role in the catalytic reduction of NO by Na-loaded char. Specifically, in most cases, the interaction of NO with Na-loaded char largely depends on the elementary reaction of CNO-Na+NO+CO→21-IM3+CO2. As the stoichiometric ratio of NO to CO increases, the CO-Na+2NO→8-IM4+N2 becomes increasingly dominant. Moreover, higher temperature causes the CNO-Na+NO→20-P + N2O as the dominant reaction. Nonetheless, one thing that these reactions have in common is that they are all related to the catalytic active center –ONa. Therefore, the NO reduction Na-loaded char largely depends on the interaction of NO with the carbonaceous surface containing –ONa. Inspired by this, a conceptual approach was proposed to improve the catalytic performance of Na on NO reduction, and it has been shown to be theoretically feasible. To summarize, the combination of DFT, TST and kinetic calculations is useful to clarify the interaction between NO with Na-loaded char, and it gives a basis for the development of micro-kinetic model.  相似文献   

18.
The low-temperature auto-ignition chemistry of isopropyl nitrate (iPN) was experimentally and numerically investigated in the present study. The ignition delay times (IDTs) of iPN were measured stoichiometrically over a temperature range of 560–600 K at effective pressures of 5 and 10 bar in a rapid compression machine. A two-stage ignition phenomenon of iPN was observed. Both the first-stage IDTs and total IDTs vary rapidly within the narrow temperature range investigated (∼40 K). A recent iPN kinetic mechanism proposed by Fuller and Goldsmith for pyrolysis studies was extended. The reaction kinetics of CH3CHO + NO2 has been theoretically calculated at 500–1500 K and 0.01–100 atm. The rate information of CH3 + NO2 was updated based on previous theoretical results. The O2-addition channel of acetyl radical (CH3CO), which accounts for the first-stage IDT, was also considered in the present work. The extended iPN kinetic model predicts the two-stage IDTs well. Simulation results suggest that the IDTs are most sensitive to the following two reactions: (1) CH3 + NO2 = CH3O + NO; (2) CH3 + NO2 = CH3NO2. The former promotes the overall reactivity by yielding the reactive methoxy radical, while the latter forms a relatively stable product (i.e., CH3NO2). The reaction of CH3CHO + NO2 = CH3CO + HONO supplements the formation of CH3CO. The different consumption channels of CH3CO radicals (the O2-addition reaction and the decomposition reaction) lead to different chain reactions yielding OH radicals with increasing temperature in the ignition process. The “NONO2 loop” is the main route for OH formation in the studied conditions, which is mainly responsible for the iPN ignition.  相似文献   

19.
Understanding the ion chemistry in flames is crucial for developing ion sensitive technologies for controlling combustion processes. In this work, we measured the spatial distributions of positive ions in atmospheric-pressure burner-stabilized premixed flames of ethylene/oxygen/argon mixtures in a wide range of equivalence ratios ϕ = 0.4÷1.5. A flame sampling molecular beam system coupled with a quadrupole mass spectrometer was used to obtain the spatial distributions of cations in the flames, and a high mass resolution time-of-flight mass spectrometer was utilized for the identification of the cations having similar m/z ratios. The measured profiles of the flame ions were corrected for the contribution of hydrates formed during sampling in the flames slightly upstream the flame reaction zone. We also proposed an updated ion chemistry model and verified it against the experimental profiles of the most abundant cations in the flames. Our model is based on the kinetic mechanism available in the literature extended with the reactions for C3H5+ cation. Highly accurate W2-F12 quantum chemical calculations were used to obtain a reliable formation enthalpy of C3H5+. The model was found to reproduce properly the measured relative abundance of the key oxygenated cations (viz., CH5O+, C2H3O+) in the whole range of equivalence ratios employed, and the C3H5+ cation abundance in the richest flame with ϕ=1.5, but significantly underpredicts the relative mole fraction of C3H3+, which becomes a key species under fuel-rich conditions. Apart from this, several aromatic and cyclic CxHy cations dominating under fuel-rich conditions were identified. We also considered the most important directions for the further refinement of the mechanism.  相似文献   

20.
Hydrogen (H2) is known to be the fastest fuel to ignite among all practical combustion fuels. In this study, for the first time, longer ignition delay times (IDTs) for the H2 and H2 blended CH4 mixtures were measured compared to those for pure CH4. This work investigates the ignition characteristics of H2, CH4, and 50% CH4/50% H2 mixtures using a rapid compression machine at pressures ranging from 20 to 50 bar and at equivalence ratios (φ) from 0.5 to 2.0 in air in the temperature range 858–1080 K. The experimental IDTs are simulated using a newly updated kinetic mechanism, NUIGMech1.3, and good agreement is observed. At lower temperatures the IDTs of H2, CH4, and the 50% CH4/50% H2 mixtures are similar to one another, and the IDTs of the 50% CH4/50% H2 mixtures are longer than those for pure CH4 at temperatures below 930 K. At temperatures below 890–925 K, depending on the operating pressure and equivalence ratio, the hydrogen mixtures are the slowest to ignite, with IDTs being 2.5 times longer than those recorded for CH4 at a pressure of 40 bar at 890 K for φ = 1.0, and at 875 K for φ = 2.0. At low temperatures alkyl (Ṙ = ĊH3 and Ḣ) radicals add to O2 producing RȮ2 radicals, which then react with HȮ2 radicals forming ROOH (H2O2 and CH3OOH) and O2. For H2, the self-recombination of HȮ2 radicals leads to chain propagation which inhibits reactivity, whereas for CH4, the reaction between RȮ2 (CH3OȮ) and HȮ2 leads to chain branching, increasing reactivity. Furthermore, CH3OOH decomposes more easily to produce CH3Ȯ and ȮH radicals than does H2O2 to produce two ȮH radicals. Thus, mixtures containing higher H2 concentrations are slower to ignite compared to those with higher CH4 concentrations at low temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号