首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 389 毫秒
1.
Co-firing ammonia (NH3) and hydrogen (H2) or H2-rich fuel and partially cracking NH3 are promising non-carbon combustion techniques for gas turbines and marine engines, raising a growing need to understand the interactions of H2 and nitric oxide (NO) as well as the non-hydrocarbon nitrogen oxides (NOX) reduction mechanism under flame conditions. In this work, the outwardly propagating spherical flame method was used to investigate the laminar flame propagation of H2/NO and H2/NO/nitrogen (N2) mixtures at initial pressure (Pu) of 2 atm, initial temperature (Tu) of 298 K and equivalence ratios of 0.2-1.4. The laminar burning velocities (LBVs) of H2/NO mixtures are generally 5-10 times lower than those of H2/air mixtures, while the dilution of N2 can dramatically inhibit the laminar flame propagation. A kinetic model of H2/NO combustion was constructed and validated against the new data in this work and other types of experimental data in literature. The modeling analyses reveal that NO+H=N+OH becomes the most important chain-branching reaction in H2/NO reaction system, while the LBV data of H2/NO mixtures in this work can provide highly sensitive validation targets for the kinetics in H2 and NO interactions. Furthermore, the NO reduction to N2 mainly proceeds through NO+N=N2+O under various H2/NO ratios, and NO+O=N+O2 is found to have a significant contribution to NO reduction under NO-rich conditions.  相似文献   

2.
Co-firing methane (CH4) and ammonia (NH3) has attracted growing concerns as a feasible greenhouse gas reduction strategy in gas turbine-based power generation, which raises the need to better understand the interaction of methane and nitric oxide (NO) under flame conditions. In this work, laminar flame propagation of CH4/NO mixtures at initial pressure (Pu) of 1 atm, initial temperature (Tu) of 298 K and equivalence ratios of 0.4–1.8 was experimentally investigated using a constant-volume combustion vessel. Laminar burning velocities (LBVs) and Markstein lengths were experimentally determined. A kinetic model of CH4/NO combustion was developed with rate constants of several important reactions updated, presenting reasonable predictions on the measured LBVs of CH4/NO mixtures. The modeling analyses reveal that the reduction of NO can proceed through two mechanisms, i.e. the hydrocarbon NO reduction mechanism and non-hydrocarbon NO reduction mechanism. Among the two mechanisms, the non-hydrocarbon NO reduction mechanism which includes reactions NO+H = N+OH, NO+O = N + O2 and NO+N = N2+O has a higher contribution to NO reduction at the equivalence ratio of 0.6, while the hydrocarbon NO reduction mechanism with hydrocyanic acid (HCN) as the key intermediate plays a more important role at the equivalence ratio of 1.8. NO+H = N+OH and CH3+NOHCN+H2O are found to be the two most sensitive reactions to promote the flame propagation, while the LBVs measured in this work are demonstrated to provide strong constraint for these reactions. Furthermore, previous CH4/O2/NO oxidation data measured in flow reactor and rapid compression machine were also simulated, which provides extended validation of the present model over wider conditions.  相似文献   

3.
This work reports an experimental and kinetic modeling investigation on the laminar flame propagation of three butylbenzene isomers (n-butylbenzene, iso-butylbenzene and tert-butylbenzene)/air mixtures. The experiments were performed in a high-pressure constant-volume cylindrical combustion vessel at the initial temperature of 423 K, initial pressures of 1–10 atm, and equivalence ratios (?) of 0.7–1.5. The laminar burning velocities of butylbenzene/O2/He mixtures were also measured at 423 K, 10 atm and ? = 1.5 to provide additional experimental data under conditions that the butylbenzene/air experiments are susceptible of cellular instability. Comparison among the laminar burning velocities of butylbenzenes including both the three isomers investigated in this work and sec-butylbenzene investigated in our recent work [Combust. Flame 211 (2020) 18–31] shows remarkable fuel isomeric effects, that is, iso-butylbenzene has the slowest laminar burning velocities, followed by n-butylbenzene and tert-butylbenzene, while sec-butylbenzene has the fastest laminar burning velocities. A kinetic model for butylbenzene combustion was developed to simulate the laminar flame propagation of butylbenzenes. Sensitivity analysis was performed to reveal important reactions in laminar flame propagation of butylbenzenes, including both small species reactions and fuel-specific reactions. Kinetic effects are concluded to result in the different laminar burning velocities of four butylbenzene isomers. Small species reactions control the laminar flame propagation under lean conditions, which results in small differences of laminar burning velocities. Chain termination reactions, especially fuel-specific reactions, have important contributions to inhibit the laminar flame propagation under rich conditions. The structural features of butylbenzene isomers can significantly affect the formation of some crucial radicals such as methyl, cyclopentadienyl and benzyl radicals under rich conditions, which leads to remarkable fuel isomeric effects on their laminar burning velocities, especially at high pressures.  相似文献   

4.
In order to study the combustion chemistry of carboxyl functionality, the laminar burning velocity of acetic acid/air and propanoic acid/air mixtures was investigated in a high-pressure constant-volume cylindrical combustion vessel at 423 K, 1 atm and equivalence ratios of 0.7–1.4. Experimental results reveal that the flame propagation of propanoic acid flame is much faster than that of acetic acid flame, especially under rich conditions, and the laminar burning velocity of propanoic acid/air mixtures peaks at richer conditions than that of acetic acid. The present theoretical calculations for the isomerization and decomposition of propanoic acid radicals indicate that the primary radical products are HOCO, H and C2H5, while those in acetic acid flame are CH3 and OH based on previous studies. A kinetic model of the two acids was developed mainly based on previous and the present theoretical calculation results. It could reasonably capture the measured laminar burning velocities of acetic acid/air and propanoic acid/air mixtures in this work, as well as the previous experimental data in literature. Based on the present model, CH3- and ketene-related pathways play an important role in acetic acid flames. Under rich conditions, ketene is mostly converted to CH3 via CH2CO+HCH3+CO, and the chain-termination reaction of CH3+H(+M)=CH4(+M) is enhanced, which strongly inhibits the propagation of rich acetic acid flames. In contrast, C2H5 and ethylene chemistry play an important role in propanoic acid flames. Rich conditions promote the decomposition of C2H5, yielding ethylene and H, which can facilitate the flame propagation. This can explain the shift of the peak laminar burning velocity of propanoic acid/air mixtures towards a slightly richer condition compared with that of acetic acid/air mixtures.  相似文献   

5.
The initial propagation processes of expanding spherical flames of CH4/N2/O2/He mixtures at different ignition energies were investigated experimentally and numerically to reduce the effect of ignition energy on the accurate determination of laminar flame speeds. The experiments were conducted in a constant-volume combustion bomb at initial pressures of 0.07???0.7?MPa, initial temperatures of 298???398?K, and equivalence ratios of 0.9???1.3 with various Lewis numbers. The A-SURF program was employed to simulate the corresponding flame propagation processes. The results show that elevating the ignition energy increases the initial flame propagation speed and expands the range of flame trajectory which is affected by ignition energy, but the increase rates of the speed and range decrease with the ignition energy. Based on the trend of the minimum flame propagation speed during the initial period with the ignition energy, the minimum reliable ignition energy (MRIE) is derived by considering the initial flame propagation speed and energy conservation. It is observed that MRIE first decreases and then increases with the increasing equivalence ratio and monotonously decreases with increasing initial pressure and temperature. As the Lewis number rises, MRIE increases. The results also suggest that during the data processing of the spherical flame experiment, the accuracy of determination of laminar flame speeds can be enhanced when taking the flame radius influenced by MRIE as the lower limit of the flame radius range. Then the flame radius influenced by MRIE was defined as RFR. It can also be found that there exist nonlinear relationships between RFR and the equivalence ratio and Lewis number, and the RFR decreases with increasing initial pressure and temperature.  相似文献   

6.
Usually premixed flame propagation and laminar burning velocity are studied for mixtures at normal or elevated temperatures and pressures, under which the ignition delay time of the premixture is much larger than the flame resistance time. However, in spark-ignition engines and spark-assisted compression ignition engines, the end-gas in the front of premixed flame is at the state that autoignition might happen before the mixture is consumed by the premixed flame. In this study, laminar premixed flames propagating into an autoigniting dimethyl ether/air mixture are simulated considering detailed chemistry and transport. The emphasis is on the laminar burning velocity of autoigniting mixtures under engine-relevant conditions. Two types of premixed flames are considered: one is the premixed planar flame propagating into an autoigniting DME/air without confinement; and the other is premixed spherical flame propagating inside a closed chamber, for which four stages are identified. Due to the confinement, the unburned mixture is compressed to high temperature and pressure close to or under engine-relevant conditions. The laminar burning velocity is determined from the constant-volume propagating spherical flame method as well as PREMIX. The laminar burning velocities of autoigniting DME/air mixture at different temperatures, pressures, and autoignition progresses are obtained. It is shown that the first-stage and second-stage autoignition can significantly accelerate the flame propagation and thereby greatly increase the laminar burning velocity. When the first-stage autoignition occurs in the unburned mixture, the isentropic compression assumption does not hold and thereby the traditional method cannot be used to calculate the laminar burning velocity. A modified method without using the isentropic compression assumption is proposed. It is shown to work well for autoigniting mixtures. Besides, a power law correlation is obtained based on all the laminar burning velocity data. It works well for mixtures before autoignition while improvement is still needed for mixtures after autoignition.  相似文献   

7.
Chemical energy vectors will play a crucial role in the transition of the global energy system, due to their essential advantages in storing energy in form of gaseous, liquid, or solid fuels. Ammonia (NH3) has been identified as a highly promising candidate, as it is carbon-free, can be stored at moderate pressures, and already has a developed distribution infrastructure. As a fuel NH3 has poor combustion properties that can be improved by the addition of hydrogen, which can be obtained energy-efficiently by partially cracking ammonia into hydrogen (H2) and nitrogen (N2) prior to the combustion process. The resulting NH3/H2/N2 blend leads to significantly improved flame stability and resilience to strain-induced blow-out, despite similar laminar flame properties compared to equivalent methane/air flames. This study reports the first measurements of extinction strain rates, measured using the premixed twin-flame configuration in a laminar opposed jet burner, for two NH3/H2/N2 blends over a range of equivalence ratios. Local strain rates are measured using particle tracking velocimetry (PTV) and are related to the inflow conditions, such that the local strain rate at the extinction point can be approximated. The results are compared with 1D-simulations using three recent kinetic mechanisms for ammonia oxidation. By relating the extinction strain rates to laminar flame properties of the unstretched flame, a comparison of the extinction behaviour of CH4 and NH3/H2/N2 blends can be made. For lean mixtures, NH3/H2/N2-air flames show a significant higher extinction resistance in comparison to CH4/air. In addition, a strong non-linear dependence between the resistance to extinction and equivalence ratio for NH3/H2/N2 blends is observed.  相似文献   

8.
This work reports an experimental and kinetic modeling investigation on the laminar flame propagation of acetone and 2-butanone at normal to high pressures. The experiments were performed in a high-pressure constant-volume cylindrical combustion vessel at 1–10 atm, 423 K and equivalence ratios of 0.7–1.5. A kinetic model of acetone and 2-butanone combustion was developed from our recent pentanone model [Li et al., Proc. Combust. Inst. 38 (2021) 2135–2142] and validated against experimental data in this work and in literature. Together with our recently reported data of 3-pentanone, remarkable fuel molecular structure effects were observed in the laminar flame propagation of the three C3C5 ketones. The laminar burning velocity increases in the order of acetone, 2-butanone and 3-pentanone, while the pressure effects in laminar burning velocity reduces in the same order. Modeling analysis was performed to provide insight into the key pathways in flames of acetone and 2-butanone. The differences in radical pools are concluded to be responsible for the observed fuel molecular structure effects on laminar burning velocity. The favored formation of methyl in acetone flames inhibits its reactivity and leads to the slowest laminar flame propagation, while the easiest formation of ethyl in 3-pentanone flames results in the highest reactivity and fastest laminar flame propagation. Furthermore, the LBVs of acetone and 3-pentanone exhibit the strongest and weakest pressure effects respectively, which can be attributed to the influence of fuel molecular structures through two crucial pressure-dependent reactions CH3 + H (+M) = CH4 (+M) and C2H4 + H (+M) = C2H5 (+M).  相似文献   

9.
Ammonia (NH3) direct combustion is attracting attention for energy utilization without CO2 emissions, but fundamental knowledge related to ammonia combustion is still insufficient. This study was designed to examine effects of radiation heat loss on laminar ammonia/air premixed flames because of their very low flame speeds. After numerical simulations for 1-D planar flames with and without radiation heat loss modeled by the optically thin model were conducted, effects of radiation heat loss on flame speeds, flame structure and emissions were investigated. Simulations were also conducted for methane/air mixtures as a reference. Effects of radiation heat loss on flame speeds were strong only near the flammability limits for methane, but were strong over widely diverse equivalence ratios for ammonia. The lower radiative flame temperature suppressed the thermal decomposition of unburned ammonia to hydrogen (H2) at rich conditions. The equivalence ratio for a low emission window of ammonia and nitric oxide (NO) in the radiative condition shifted to a lower value than that in the adiabatic condition.  相似文献   

10.
The laminar burning rate, the explosion peak pressure, and the pressure rise coefficient have been measured for the first time for silane-nitrous oxide-argon mixtures using the spherically expanding flame technique in a constant volume combustion chamber. For these three parameters, the values obtained were higher than for hydrogen-nitrous oxide-argon and typical hydrocarbon-based mixtures. A maximum burning rate of 1800 g/m2 s was measured at 101 kPa, whereas under similar conditions, a maximum burning rate around 950 g/m2 s has been reported for hydrogen-nitrous oxide-argon mixtures. To better understand the chemical dynamics of flames propagating in SiH4–N2O–Ar mixtures, a detailed reaction model from the literature was improved using collision limit violation analysis and updated thermodynamic properties calculated with a high-level ab initio approach. The reaction model predicts the burning rate within 14% on average but demonstrates error close to 50% for the richest mixtures. The chemistry of the H–O–N system is important under all the conditions presently studied. The chemistry of the Si–H–O–N system demonstrates an increasing importance under rich conditions. In particular, the reactions (i) forming SiOx(s); (ii) describing the interaction of Si-species with N2O; and (iii) involving silicon hydrides, have an important role for the heat release dynamics. The condensed combustion products formed in the silane-nitrous oxide-argon flames were sampled and characterized using electron micrograph, electronic diffraction, energy-dispersive spectroscopy, and X-ray powder diffraction. For all equivalence ratios, silica spherical particles with a mean diameter in the range 200–300 nm were observed. In addition, for mixtures with Φ ≥ 2.2, silicon nanowires were formed. X-ray diffraction experiments showed that the silicon nanowires are composed of metal silicon characterized by a cubic structure (lattice parameter: a=5.425Å) with the Fm-3m space group.  相似文献   

11.
Laminar flame speeds of ammonia with oxygen-enriched air (oxygen content varying from 21 to 30 vol.%) and ammonia-hydrogen-air mixtures (fuel hydrogen content varying from 0 to 30 vol.%) at elevated pressure (1–10 bar) and temperature (298–473 K) were determined experimentally using a constant volume combustion chamber. Moreover, ammonia laminar flame speeds with helium as an inert were measured for the first time. Using these experimental data along with published ones, we have developed a newly compiled kinetic model for the prediction of the oxidation of ammonia and ammonia-hydrogen blends in freely propagating and burner stabilized premixed flames, as well as in shock tubes, rapid compression machines and a jet-stirred reactor. The reaction mechanism also considers the formation of nitrogen oxides, as well as the reduction of nitrogen oxides depending on the conditions of the surrounding gas phase. The experimental results from the present work and the literature are interpreted with the help of the kinetic model derived here. The experiments show that increasing the initial temperature, fuel hydrogen content, or oxidizer oxygen content causes the laminar flame speed to increase, while it decreases when increasing the initial pressure. The proposed kinetic model predicts the same trends than experiments and a good agreement is found with measurements for a wide range of conditions. The model suggests that under rich conditions the N2H2 formation path is favored compared to stoichiometric condition. The most important reactions under rich conditions are: NH2+NH=N2H2+H, NH2+NH2=N2H2+H2, N2H2+H=NNH+H2 and N2H2+M=NNH+H+M. These reactions were also found to be among the most sensitive reactions for predicting the laminar flame speed for all the cases investigated.  相似文献   

12.
Ammonia is a promising alternative clean fuel due to its carbon-free character and high hydrogen density. However, the low reactivity of ammonia and the potential high NOx emissions hinder its applications. Blending methane into ammonia can effectively improve the reactivity of pure NH3. In addition, lean combustion, as a high-efficiency and low-pollution combustion technology, is an effective measure to control the potential increase in NOx emissions. In the present work, the ignition delay times (IDTs) of NH3/CH4 mixtures highly diluted in Ar (98%) with CH4 mole fractions of 0%, 10%, and 50% were measured in a shock tube at an equivalence ratio of 0.5, pressures of 1.75 and 10 bar and a temperature range of 1421 K - 2149 K. A newly comprehensive kinetic model (named as HUST-NH3 model) for the NH3/CH4 mixtures oxidation was developed based on our previous work. Four kinetic models, the HUST-NH3 model, Glarborg model [19], Okafor model [7], and CEU model [10], were evaluated against the ignition delay times, laminar flame speeds, and species profiles of pure ammonia and ammonia/methane mixtures from the present work and literature. The simulation results indicated that the HUST-NH3 model shows the best performance among the above four models. Kinetic analysis results indicated that the absence of NH3 + M = NH2 + H + M (R819) and N2H2 + M = H + NNH + M (R902) in the CEU model and Okafor model cause the deviations between the experimental and simulation results. The overestimation of the rate constants of NH2 + NO = NNH + OH (R838) in the Glarborg model is the main reason for the overprediction of the NH3 laminar flame speeds.  相似文献   

13.
This study is performed to experimentally examine the fundamental burning velocity characteristics of meso-scale outwardly propagating spherical laminar flames in the range of flame radius rf approximately from 1 to 5 mm for hydrogen, methane and propane mixtures, in order to make clear a method for improving combustion of micro–meso scale flames. Macro-scale laminar flames with rf > 7 mm are also examined for comparison. The mixtures have nearly the same laminar burning velocity (SL0 = 25 cm/s) for unstretched flames and different equivalence ratios ?. The radius rf and the burning velocity SLl of meso-scale flames are estimated by using sequential schlieren images recorded under appropriate ignition conditions. It is found that SLl of hydrogen and methane premixed meso-scale flames at the same rf or the Karlovitz number Ka shows a tendency to increase with decreasing ?, whereas SLl of propane flames increases with ?. However, SLl tends to decrease with the Lewis number Le and the Markstein number Ma, irrespective of the type of fuel and ?. It also becomes clear that the optimum flame size and Ka to improve the burning velocity exist for some mixtures depending on Le and fuel types.  相似文献   

14.
本文使用定容圆柱形燃烧弹,在初始温度373 K和初始压力1、2、5、10 atm的条件下,对当量比从0.7到1.5的1-庚烯/空气混合物的层流火焰传播进行了研究.利用记录的纹影图像处理得到层流火焰传播速度和马克斯坦长度.基于先前报道的1-己烯燃烧反应动力学模型,发展了1-庚烯的模型.该模型验证了本工作测量的1-庚烯层流火焰传播速度数据及文献中的1-庚烯着火延迟时间数据.通过开展敏感性分析和路径分析,帮助理解了1-庚烯在不同压力下的高温化学及其对层流火焰传播的影响.另外,比较了1-庚烯/空气和先前报道的正庚烷/空气的层流火焰传播.由于更强的放热性及反应活性,1-庚烯/空气的层流火焰传播速度在绝大多数条件下均快于正庚烷/空气的结果.  相似文献   

15.
This paper reports simulation results of oscillatory cool flame burning of an isolated, submillimeter sized n-heptane (n-C7H16) droplet in a selectively ozone (O3) seeded nitrogen-oxygen (N2-O2) environments at atmospheric pressure. An evolutionary one-dimensional droplet combustion code encompassing relevant physics and detailed chemistry was employed to explore the roles of low-temperature chemistry, O3 seeding, and dynamic flame structure on burning behaviors. For XO2= 21% and a range of selective ozone seeding, near-quasi-steady cool flame burning is achieved directly (without requiring hot flame initiation and radiative extinction). Under low oxygen index conditions, but with significant O3 seeding (XO3 = 5%), a nearly quasi-steady cool flame is initially established that then transitions to a dynamically oscillating cool flame burning mode which continues until the droplet is completely consumed. It is found that the oscillation occurs as result of a initial depletion of fuel vapor-oxidizer layer evolving near the droplet surface and its dynamic re-establishment through liquid vaporization and vapor/oxidizer transport. A kinetic analysis indicates that the dynamic competition between the reaction classes- (a) degenerate chain branching and (b) chain termination/propagation - along with continuous fuel and oxygen leakage through the flame location contributes to an oscillatory burning phenomena of ever-increasing amplitude. Analysis based on single full-cycle of oscillatory burning shows that the reaction progression matrices (evolution of heat and species) for QOOH➔chain propagation/termination reactions (here, Q = C7H14-) directly scales with the gas phase temperature field. On the contrary, the QOOH➔degenerate branching reactions undergoes three distinct stages within the same oscillatory cycle. The coupled flame dynamics and kinetics suggest that in the oscillatory burning mode, kinetic processes dynamically cross through conditions characterizing the negative temperature coefficient (NTC) turnover temperature, separating low temperature and NTC kinetic regimes. In addition, a parametric study is conducted to determine the role of O3 seeding level on the observed oscillation phenomena.  相似文献   

16.
Laminar burning velocities are of great importance in many combustion models as well as for validation and improvement of chemical kinetic schemes. Determining laminar burning velocities with high accuracy is quite challenging and different approaches exist. Hence, a comparison of existing methods measuring and evaluating laminar burning velocities is of interest. Here, two optical diagnostics, high speed tomography and Schlieren cinematography, are simultaneously set up to investigate methods for evaluating laminar flame speed in a spherical flame configuration. The hypothesis to obtain the same flame propagation radii over time with the two different techniques is addressed. Another important aspect is the estimation of flame properties, such as the unstretched flame propagation speed and Markstein length in the burnt gas phase and if these are estimated satisfactorily by common experimental approaches. Thorough evaluation of the data with several extrapolation techniques is undertaken. A systematic extrapolation approach is presented to give more confidence into results generated experimentally. The significance of the linear extrapolation routine is highlighted in this context. Measurements of spherically expanding flames are carried out in two high-pressure, high-temperature, constant-volume vessels at RWTH in Aachen, Germany and at ICARE in Orleans, France. For the discussion of the systematic extrapolation approach, flame speed measurements of methane / air mixtures with mixture Lewis numbers moderately away from unity are used. Conditions were varied from lean to rich mixtures, at temperatures of 298–373 K, and pressures of 1 atm and 5 bar.  相似文献   

17.
The aim of the present work was to characterize both the effects of pressure and of hydrogen addition on methane/air premixed laminar flames. The experimental setup consists of a spherical combustion chamber coupled to a classical shadowgraphy system. Flame pictures are recorded by a high speed camera. Global equivalence ratios were varied from 0.7 to 1.2 for the initial pressure range from 0.1 to 0.5 MPa. The mole fraction of hydrogen in the methane + hydrogen mixture was varied from 0 to 0.2. Experimental results were compared to calculations using a detailed chemical kinetic scheme (GRIMECH 3.0). First, the results for atmospheric laminar CH4/air flames were compared to the literature. Very good agreements were obtained both for laminar burning velocities and for burned gas Markstein length. Then, increasing the hydrogen content in the mixture was found to be responsible for an increase in the laminar burning velocity and for a reduction of the flame dependence on stretch. Transport effects, through the reduction of the fuel Lewis number, play a role in reducing the sensitivity of the fundamental flame velocity to the stretch. Finally, when the pressure was increased, the laminar burning velocity decreased for all mixtures. The pressure domain was limited to 0.5 MPa due to the onset of instabilities at pressures above this value.  相似文献   

18.
Biodiesel is a family of renewable engine fuels with carbon-neutral nature. In this work, three C5H10O2 esters (methyl butanoate, methyl isobutanoate and ethyl propanoate), which can serve as model compounds of biodiesel and represent linear and branched methyl esters and linear ethyl esters, were investigated to characterize their laminar flame propagation characteristics up to 10 atm and unravel the effects of isomeric fuel structures. A high-pressure constant-volume cylindrical combustion vessel was used to achieve laminar burning velocity measurements at 1–10 atm, 423 K and equivalence ratios of 0.7–1.5, while comparative experimental work was performed on a heat flux burner at 1 atm, 393 K and equivalence ratios of 0.7–1.6 for methyl butanoate and ethyl propanoate. The laminar burning velocity generally decreases with increasing pressure and increases in the order of methyl isobutanoate, methyl butanoate and ethyl propanoate, which shows distinct fuel isomeric effects. A kinetic model of C5H10O2 esters was developed and validated against the new data in this work and previous data in literature. Modeling analyses were performed to provide insight into the fuel-specific flame chemistry of the three esters isomers. Remarkable differences in radical pools of three ester isomers are concluded to be responsible for the observed fuel isomeric effects on laminar flame propagation. The feature of two ethyl groups connected to the ester group in ethyl propanoate facilitates the ethyl production and inhibits the methyl and allyl production, making it propagate fastest among the three isomers. The branched structure feature of methyl isobutanoate with methyl and i-propyl groups connected to the ester group prevents the ethyl formation and results in considerable CH3 and allyl production, which decelerates its laminar flame propagation.  相似文献   

19.
As a carbon-free fuel, hydrogen has received significant attention recently since it can help enable low-carbon-economy. Hydrogen has very broad flammability range and very low minimum ignition energy, and thereby there are severe safety concerns for hydrogen transportation and utilization. Cryo-compressed hydrogen is popularly used in practice. Therefore, it is necessary to investigate the combustion properties of hydrogen at extremely low or cryogenic temperatures. This study aims to assess and interpret the effects of cryogenic temperature on premixed hydrogen/air flame propagation and acceleration in a thin closed channel. Different initial temperatures ranging from normal temperature (T0 = 300 K) to cryogenic temperature (T0 = 100 K) are considered. Both one- and two-dimensional hydrogen/air flames are investigated through transient simulations considering detailed chemistry and transport. It is found that when the initial temperature decreases from T0 = 300 K to T0 = 100 K, the expansion ratio and equilibrium pressure both increase substantially while the laminar flame speeds relative to unburned and burned gasses decrease moderately. The one-dimensional flame propagation is determined by laminar flame speed and thereby the combustion duration increases as the initial temperature decreases. However, the opposite trend is found to happen to two-dimensional flame propagation, which is mainly controlled by the flame surface area increase due to the no-slip side wall constraint and flame instability. Based on the change in flame surface area, three stages including the initial acceleration, steady burning and rapid acceleration are identified and investigated. It is demonstrated that the large expansion ratio and high pressure rise at cryogenic temperatures can significantly increase the flame surface area in early stage and promote both Darrieus-Landau instability (hydrodynamic instability) and Rayleigh-Taylor instability in later stage. These two instabilities can substantially increase the flame surface area and thereby accelerate flame propagation in hydrogen/air mixtures at cryogenic temperatures. The present study provides useful insights into the fundamental physics of hydrogen flames at extremely low temperatures, and is closely related to hydrogen safety.  相似文献   

20.
This study clarifies the effects of Lewis number (Le) on laminar and turbulent expanding flames of NH3/H2/air mixtures. The laminar burning velocity (SL) and turbulent burning velocity (ST) were measured using a medium-scale, fan-stirred combustion chamber with ammonia/hydrogen molar ratio (NH3/H2) of 50/50 and 80/20 under the maximum pressures of 5 atm. The lean laminar flame with NH3/H2 = 50/50 is significantly accelerated by the diffusional–thermal instability, which dominated the trend of ST,c=0.1 with the equivalence ratio (ϕ). The lean normalized turbulent burning velocity (ST/SL) increases with the decrease of hydrogen content due to the weakening effects of SL. However, the ST/SL reaches peak with hydrogen volumetric content less than 20% due to effects made by diffusional–thermal instability than SL did. The turbulent flame of NH3/H2/air mixtures is characterized by self-similar acceleration propagation, and propagation with Le < 1 is faster. A modified correlation considering the effects of Le was proposed, as (d<r>/dt)/σSL = 0.118(ReT,flameLe−2)0.57, which was able to predict not only the self-similar propagation of NH3/H2/air but also the previous syngas/air flames. The Kobayashi correlations modified by three kinds of Le power exponents were used to clarify the effects of Le by comparing their fitting parameters and predictive powers on experimental data and literature data. Similar pre-factors, power exponents and the goodness of fit (R2) were obtained with Le ranging from 0.58 to 1.62, which suggested that the determination of Le power exponent had no significant effect on the prediction accuracy of the ST/SL trend with data of Le near unity. This might be attributed to the fact that the variation ranges of the dimensionless number that characterizes the experimental conditions is much larger than that of the Le.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号