首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   292篇
  免费   17篇
  国内免费   2篇
化学   195篇
晶体学   1篇
力学   6篇
综合类   1篇
数学   21篇
物理学   87篇
  2024年   1篇
  2023年   7篇
  2022年   10篇
  2021年   39篇
  2020年   21篇
  2019年   20篇
  2018年   14篇
  2017年   5篇
  2016年   18篇
  2015年   13篇
  2014年   22篇
  2013年   22篇
  2012年   15篇
  2011年   10篇
  2010年   14篇
  2009年   14篇
  2008年   6篇
  2007年   10篇
  2006年   5篇
  2005年   11篇
  2004年   6篇
  2003年   2篇
  2002年   2篇
  2001年   4篇
  2000年   1篇
  1995年   2篇
  1990年   1篇
  1988年   1篇
  1984年   1篇
  1982年   1篇
  1977年   1篇
  1975年   3篇
  1974年   3篇
  1973年   4篇
  1970年   1篇
  1966年   1篇
排序方式: 共有311条查询结果,搜索用时 46 毫秒
1.
2.
In this paper, we define interval‐valued left‐sided and right‐sided generalized fractional double integrals. We establish inequalities of Hermite‐Hadamard like for coordinated interval‐valued convex functions by applying our newly defined integrals.  相似文献   
3.
NOx mitigation is a central focus of combustion technologies with increasingly stringent emission regulations. NOx can also enhance the autoignition of hydrocarbon fuels and can promote soot oxidation. The reaction between allyl radical (C3H5) and NOx plays an important role in the oxidation kinetics of propene. In this work, we measured the absolute rate coefficients for the redox reaction between C3H5 and NOx over the temperature range of 1000–1252 K and pressure range of 1.5–5.0 bar using a shock tube and UV laser absorption technique. We produced C3H5 by shock heating of C3H5I behind reflected shock waves. Using a Ti:Sapphire laser system with frequency quadrupling, we monitored the kinetics of C3H5 at 220 nm. Unlike low-temperature chemistry, the two target reactions, C3H5 + NO → products (R1) and C3H5 + NO2 → products (R2), exhibited a strong positive temperature dependence for this radical-radical type reaction. However, these reactions did not show any pressure dependence over the pressure range of 1.5–5.0 bar, indicating that the measured rate coefficients are close to the high-pressure limit. The measured values of the rate coefficients resulted in the following Arrhenius expressions (in unit of cm3/molecule/s):k1(C3H5+NO)=1.49×10?10exp(?6083.6KT)(1017?1252K)k2(C3H5+NO2)=1.71×10?10exp(?3675.7KT)(1062?1250K)To our knowledge, these are the first high-temperature measurements of allyl + NOx reactions. The reported data will be highly useful in understanding the interaction of NOx with resonantly stabilized radicals as well as the mutual sensitization effect of NOx on hydrocarbon fuels.  相似文献   
4.
The ability to control material properties in space and time for functionally graded viscoelastic materials makes them an asset where they can be adapted to different design requirements. The continuous microstructure makes them advantageous over conventional composite materials. Functionally graded porous structures have the added advantage over conventional functionally graded materials of offering a significant weight reduction compared to a minor drop in strength. Functionally graded porous structures of acrylonitrile butadiene styrene (ABS) had been fabricated with a solid‐state constrained foaming process. Correlating the microstructure to material properties requires a deterministic analysis of the cellular structure. This is accomplished by analyzing the scanning electron microscopy images with a locally adaptive image threshold technique based on variational energy minimization. This characterization technique of the cellular morphology is analyst independent and works very well for porous structures. Inferences are drawn from the effect of processing on microstructure and then correlated to creep strain and creep compliance. Creep is strongly correlated to porosity and pore sizes but more associated to the size than to porosity. The results show the potential of controlling the cellular morphology and hence tailoring creep strain/compliance of ABS to some desired values. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 795–803  相似文献   
5.
The ever‐increasing resistance of plant microbes towards fungicides and bactericides has been causing serious threat to plant production in recent years. For the development of an effective antifungal agent, we introduce a novel hydrothermal protocol for synthesis of chitosan iron oxide nanoparticles (CH‐Fe2O3 NPs) using acetate buffer of low pH 5.0 for intermolecular interaction of Fe2O3 NPs and CH. The composite structure and elemental elucidation were carried out by using X‐ray power diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive X‐ray (EDX), Transmission Electron Microscopy (TEM), Fourier Transformed Infrared Spectroscopy (FTIR) and Ultraviolet Visible Absorption Spectroscopy (UV–vis spectroscopy). Additionally, antifungal activity was evaluated both In vitro and In vivo against Rhizopus oryzae which is causing fruit rot disease of strawberry. We compared different concentrations (0.25%, 0.50%, 075% and 1%) of CH‐Fe2O3 NPs and 50% synthetic fungicide (Matalyxal Mancozab) to figure out suitable concentration for application in the field. XRD analysis showed a high crystalline nature of the NPs with average size of 52 nanometer (nm). SEM images revealed spherical shape with size range of 50–70 nm, whereas, TEM also revealed spherical shape, size ranging from 0 nm to 80 nm. EDX and FTIR results revealed presence of CH on surface of Fe2O3 NPs. The band gap measurement showed peak 317–318 nm for bare Fe2O3 NPs and CH‐Fe2O3 NPs respectively. Antifungal activity in both In vitro and In vivo significantly increased with increase in concentration. The overall results revealed high synergetic antifungal potential of organometallic CH‐Fe2O3 NPs against Rhizopus oryzae and suggest the use of CH‐Fe2O3 NPs against other Phyto‐pathological diseases due to biodegradable nature.  相似文献   
6.
Based on the functional properties of electrospun cellulose nanofibers(CNF), scientists are showing substantial interest to enhance the aesthetic properties. However, the lower color yield has remained a big challenge due to the higher surface area of nanofibers. In this study, we attempted to improve the color yield properties of CNF by the pad-steam dyeing method. Neat CNF was obtained by deacetylation of electrospun cellulose acetate(CA) nanofibers. Three different kinds of reactive dyes were used and pad-steam dyeing parameters were optimized. SEM images revealed smooth morphology with an increase in the average diameter of nanofibers. FTIR results showed no change in the chemical structure after dyeing of CNF. Color fastness results demonstrated excellent ratings for reactive dyes, which indicate good dye fixation properties and no color loss during the washing process. The results confirm that the pad-steam dyeing method can be potentially considered to improve the aesthetic properties of CNF, which can be utilized for functional garments, such as breathable raincoats and disposable face masks.  相似文献   
7.
Journal of Thermal Analysis and Calorimetry - The increasing need of the modern era of technology for better ways to increase the heat transfer performance of thermal systems has made nanoliquids...  相似文献   
8.
Drought poses a serious threat to oilseed crops by lowering yield and crop failures under prolonged spells. A multi-year field investigation was conducted to enhance the drought tolerance in four genotypes of Camelina and canola by selenium (Se) application. The principal aim of the research was to optimize the crop yield by eliciting the physio-biochemical attributes by alleviating the adverse effects of drought stress. Both crops were cultivated under control (normal irrigation) and drought stress (skipping irrigation at stages i.e., vegetative and reproductive) conditions. Four different treatments of Se viz., seed priming with Se (75 μM), foliar application of Se (7.06 μM), foliar application of Se + Seed priming with Se (7.06 μM and 75 μM, respectively) and control (without Se), were implemented at the vegetative and reproductive stages of both crops. Sodium selenite (Na2SeO3), an inorganic compound was used as Se sources for both seed priming and foliar application. Data regarding physiochemical, antioxidants, and yield components were recorded as response variables at crop maturity. Results indicated that WP, OP, TP, proline, TSS, TFAA, TPr, TS, total chlorophyll contents, osmoprotectant (GB, anthocyanin, TPC, and flavonoids), antioxidants (APX, SOD, POD, and CAT), and yield components (number of branches per plant, thousand seed weight, seed, and biological yields were significantly improved by foliar Se + priming Se in both crops under drought stress. Moreover, this treatment was also helpful in boosting yield attributes under irrigated (non-stress) conditions. Camelina genotypes responded better to Se application as seed priming and foliar spray than canola for both years. It has concluded that Se application (either foliar or priming) can potentially alleviate adverse effects of drought stress in camelina and canola by eliciting various physio-biochemicals attributes under drought stress. Furthermore, Se application was also helpful for crop health under irrigated condition.  相似文献   
9.
A new vacancy ordered, anion deficient perovskite modification with composition of BaCoO2.67 (Ba3Co3O81) has been prepared via a two-step heating process. Combined Rietveld analysis of neutron and X-ray powder diffraction data shows a novel ordering of oxygen vacancies not known before for barium cobaltates. A combination of neutron powder diffraction, magnetic measurements, and density functional theory (DFT) studies confirms G-type antiferromagnetic ordering. From impedance measurements, the electronic conductivity of the order of 10−4 S cm−1 is determined. Remarkably, the bifunctional catalytic activity for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is found to be comparable to that of Ba0.5Sr0.5Co0.8Fe0.2O3–y, confirming that charge-ordered anion deficient non-cubic perovskites can be highly efficient catalysts.  相似文献   
10.
Soil salinity disrupts the physiological and biochemical processes of crop plants and ultimately leads to compromising future food security. Sodium nitroprusside (SNP), a contributor to nitric oxide (NO), holds the potential to alleviate abiotic stress effects and boost tolerance in plants, whereas less information is available on its role in salt-stressed lentils. We examined the effect of exogenously applied SNP on salt-stressed lentil plants by monitoring plant growth and yield-related attributes, biochemistry of enzymes (superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD)) amassing of leaf malondialdehyde (MDA) and hydrogen peroxide (H2O2). Salinity stress was induced by NaCl application at concentrations of 50 mM (moderate salinity) and 100 mM (severe salinity), while it was alleviated by SNP application at concentrations of 50 µM and 100 µM. Salinity stress severely inhibited the length of roots and shoots, the relative water content, and the chlorophyll content of the leaves, the number of branches, pods, seeds, seed yield, and biomass per plant. In addition, MDA, H2O2 as well as SOD, CAT, and POD activities were increased with increasing salinity levels. Plants supplemented with SNP (100 µM) showed a significant improvement in the growth- and yield-contributing parameters, especially in plants grown under moderate salinity (50 mM NaCl). Essentially, the application of 100 µM SNP remained effective to rescue lentil plants under moderate salinity by regulating plant growth and biochemical pathways. Thus, the exogenous application of SNP could be developed as a useful strategy for improving the performance of lentil plants in salinity-prone environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号