首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Renewables will soon dominate energy production in our electric power system. And yet, how to integrate renewable energy into the grid and the market is still a subject of major debate. Decentral Smart Grid Control (DSGC) was recently proposed as a robust and decentralized approach to balance supply and demand and to guarantee a grid operation that is both economically and dynamically feasible. Here, we analyze the impact of network topology by assessing the stability of essential network motifs using both linear stability analysis and basin volume for delay systems. Our results indicate that if frequency measurements are averaged over sufficiently large time intervals, DSGC enhances the stability of extended power grid systems. We further investigate whether DSGC supports centralized and/or decentralized power production and find it to be applicable to both. However, our results on cycle-like systems suggest that DSGC favors systems with decentralized production. Here, lower line capacities and lower averaging times are required compared to those with centralized production.  相似文献   

2.
The integration of renewable energy sources in the course of the energy transition is accompanied by grid decentralization and fluctuating power feed-in characteristics. This development raises novel challenges for power system stability and design. We investigate power system stability from the viewpoint of self-organized synchronization aspects. In this approach, the power grid is represented by a network of synchronous machines. We supplement the classical Kuramoto-like network model, which assumes constant voltages, with dynamical voltage equations, and thus obtain an extended model, that incorporates the coupled categories voltage stability and rotor angle synchronization. We compare disturbance scenarios in small systems simulated on the basis of both classical and extended model and we discuss resultant implications and possible applications to complex modern power grids.  相似文献   

3.
In the past three decades, the electric energy industry made great contribution to support rapid social and economic development in China, and meanwhile has been grown at the highest rate in the human history owing to the economic reform. In its new national development plan, more investment has been put into installation of both electricity generating capacity and transmitting capacity in order to meet fast growing demand of electric energy. However, energy resources, both fossil fuel and renewable types, and energy consumption and load centers in China are not evenly distributed in both spatial and temporal dimensions. Moreover, dominated by coal as its primary energy source, the whole eastern China is now entering an environmental crisis in which pollutants emitted by coal power plants contribute a large part. To balance the regional differences in energy sources and energy consumption while meeting the steadily increasing demands for electric energy for the whole country, in addition to increase electric generating capacity, building large-scale, long-distance ultra high voltage power grids is the top priority for next five years. China is a country prone to almost all kinds of natural disasters due to its vast, complex geographical and climatic conditions. In recent years, frequent natural disasters, especially extreme weather and climate events, have threatened the safety, reliability and stability of electric energy system in China. Unfortunately, with fast growth rate but lacking of risk assessing and prevention mechanism, many infrastructure constructions, including national power grids, are facing integrated and complex economic, social, institutional and ecological risks. In this paper, based on a case analysis of the Great Ice Storm in southern China in January 2008, risks of building a resilient power grid to deal with increasing threats from extreme weathers are discussed. The paper recommends that a systematic approach based on the social-ecological system framework should be applied to assess the risk factors associated with the power grid, and the tools to deal with complex dynamic systems need to be applied to deal with constant changes in the whole social-ecological system.  相似文献   

4.
This article reviews different kinds of models for the electric power grid that can be used to understand the modern power system, the smart grid. From the physical network to abstract energy markets, we identify in the literature different aspects that co-determine the spatio-temporal multilayer dynamics of power system. We start our review by showing how the generation, transmission and distribution characteristics of the traditional power grids are already subject to complex behaviour appearing as a result of the the interplay between dynamics of the nodes and topology, namely synchronisation and cascade effects. When dealing with smart grids, the system complexity increases even more: on top of the physical network of power lines and controllable sources of electricity, the modernisation brings information networks, renewable intermittent generation, market liberalisation, prosumers, among other aspects. In this case, we forecast a dynamical co-evolution of the smart grid and other kind of networked systems that cannot be understood isolated. This review compiles recent results that model electric power grids as complex systems, going beyond pure technological aspects. From this perspective, we then indicate possible ways to incorporate the diverse co-evolving systems into the smart grid model using, for example, network theory and multi-agent simulation.  相似文献   

5.
孟祥萍  周来  王晖  纪秀  程志明 《应用声学》2015,23(10):73-73
未来的电网将会是一个高度自动化、智能化的电网,如此一个庞大、复杂的系统从发电、输电一直到变、配、用电的过程时刻都会生成海量的电能信息及设备运行状态数据,这就需要一个强有力的信息处理平台作为支撑,且这个平台应具有对海量数据的可靠存储、准确分析、实时同步更新及共享的功能,尤其是音视频等异构数据的分析与处理.云计算技术在大数据处理中具有得天独厚的优势,本文将云计算技术引入到未来智能电网的信息处理平台的建设中,针对未来智能电网信息处理平台的各项功能需求,对比目前电网信息处理平台的诸多瓶颈进行深层次的探讨,证明了将云计算技术应用到未来智能电网信息处理平台中的可行性。  相似文献   

6.
常规恒流充电电源输入端的功率随着输出电压的升高而逐渐增加,充电结束时输入端的功率由最大值迅速降为0,不仅需要电网能够提供近2倍于平均值的峰值功率,还会造成电网电压的波动,特别是在重复频率与工频接近的大功率应用场合时,可能造成电网滤波系统的振荡,影响供电可靠性和干扰其他用电设备。提出了一种带有储能环节的电路拓扑,使得在对负载恒流充电期间,输入端的功率保持在平均功率水平。充分利用了串联谐振电路断续工作模式的特点,无需辅助变换器,仅通过双向开关对电流的控制,可将充电初期多余能量存储到储能环节,并在充电后期逐渐将此能量向负载释放,在充电启停时刻储能环节的净增能量为0。将上述拓扑电路添加到基于DC-link的恒流充电电源中,进行了分析和控制参数推导,并在输出电流8 A、最高输出电压5 kV的电源上进行了实验,结果表明:充电期间直流母线提供的电流基本稳定,幅值为常规方案中最大母线电流的一半左右。  相似文献   

7.
The large-scale integration of fluctuating renewable power generation represents a challenge to the technical and economical design of a sustainable future electricity system. In this context, the increasing significance of long-range power transmission calls for innovative methods to understand the emerging complex flow patterns and to integrate price signals about the respective infrastructure needs into the energy market design. We introduce a decomposition method of injection patterns. Contrary to standard flow tracing approaches, it provides nodal allocations of link flows and costs in electricity networks by decomposing the network injection pattern into market-inspired elementary import/export building blocks. We apply the new approach to a simplified data-driven model of a European electricity grid with a high share of renewable wind and solar power generation.  相似文献   

8.
With increasing the contribution of renewable energies in power production, the task of reducing dynamic instability in power grids must also be addressed from the generation side, because the power delivered from such sources is spatiotemporally stochastic in nature. Here we characterize the stochastic properties of the wind and solar energy sources by studying their spectrum and multifractal exponents. The computed power spectrum from high frequency time series of solar irradiance and wind power reveals a power-law behaviour with an exponent ~ 5/3 (Kolmogorov exponent) for the frequency domain 0.001?Hz < f < 0.05?Hz, which means that the power grid is being fed by turbulent-like sources. Our results bring important evidence on the stochastic and turbulent-like behaviour of renewable power production from wind and solar energies, which can cause instability in power grids. Our statistical analysis also provides important information that must be used as a guideline for an optimal design of power grids that operate under intermittent renewable sources of power.  相似文献   

9.
In this paper, heterogeneous cellular networks (HCNs) with base stations (BSs) powered from both renewable energy sources and the grid power are considered. Based on a techno-economic analysis, we demonstrate that by controlling both transmit power and stored energy usage of BSs, energy costs can be effectively reduced. Specifically, we propose a two-stage BS operation scheme where an optimization and control subproblem is solved at each stage, respectively. For the first subproblem, transmit power of BSs is adjusted while quality of service (QoS) experienced by users is preserved. In the second subproblem, we consider the strategic scheduling of renewable energy used to power the BSs. That is, harvested energy may be reserved in the battery for future use to minimize the cost of on-grid power that varies in real-time. We propose: (1) an optimization approach built on a lattice model with a method to process outage rate constraint, and (2) a control algorithm based on nonlinear model predictive control (NMPC) theory to solve the two subproblems, respectively. Simulation results include a collection of case studies that demonstrate as to how operators may manage energy harvesting BSs to reduce their electricity costs.  相似文献   

10.
针对高磁场磁共振大孔径人体成像系统中超导磁体电源在励磁时向磁体充能、退磁时把能量“逆变” 回电网的设计要求,比较了两种能量回馈型的拓扑结构。通过 Matlab 仿真分析,验证了拟采用的拓扑结构的合 理性。   相似文献   

11.
The physicochemical processes in the Earth’s upper atmosphere occurring during periods of high solar activity and causing distortions in satellite signals recorded on the receiver are examined. A direct connection between these phenomena and the factors influencing the safety of power grid operation is established. The possibility of operation of a power system at the limit of its stability, a mode that requires a fine power balancing is analyzed. It should be fully manageable and strictly controllable throughout all constituent parts, which poses complex scientific and technical problems due to the time-dependent nature of the processes occurring within the power system. Methods for the most efficient use of power lines, up to the limit of their capacity, are proposed. New approaches to ensuring the stability of monitoring, coordinated control, and protection are considered, being based on measurements of phasors (rotating vectors in the complex plane) and the parameters of transition processes. Various options for upgrading the electrical grid, which fill the gap between the management functions of energy transmission and the construction of new power lines, are analyzed. They are classified according to their profitability for the electricity market. Measures to provide the synchronization of the measuring equipment with allowance for possible failures in the operation of the GPS/GLONASS systems are outlined.  相似文献   

12.
随着加速器技术的发展,重离子加速器脉冲电源工作频率逐步提高,电流上升速率逐步提升。脉冲电源磁铁负载具有阻感特性,其在电流波形上升段将吸收大量的无功,会对电网产生周期性强冲击;同时,快电流上升速率下的高精度要求,对电源设计提出了新的挑战。论文设计了一种基于电容储能的悬浮型H桥级联拓扑,利用电源自身储能电容和负载电感进行无功交互,实现了无功能量的内部循环,以减小对其对电网冲击;同时采用H桥级联多电平结合移相倍频控制,以保证电源快动态响应下的高精度需求。样机实验结果验证了电源拓扑和控制原理的可行性,为加速器快电流上升速率脉冲电源提供了一种新的解决方案。  相似文献   

13.
电力安全与超导磁储能系统   总被引:1,自引:0,他引:1  
随着我国大规模电力系统的逐步形成,电网的安全稳定问题日渐突出,保证电力系统的安全稳定运行已经成为电网发展和运行的重要任务.超导磁储能系统以其对系统功率需求的快速响应特性可以为提高电力系统的稳定性提供新的技术途径,同时对改善电能质量、提高可靠性也有很好的技术优势.本文在简要论证电力安全的重要性的基础上,对SMES提高系统的安全稳定性的优越性进行了分析,并介绍了国家863计划项目“高温超导磁储能系统”的工作进展.  相似文献   

14.
一种基于势博弈的无线传感器网络拓扑控制算法   总被引:1,自引:0,他引:1       下载免费PDF全文
李小龙  冯东磊  彭鹏程 《物理学报》2016,65(2):28401-028401
在实际的应用中,无线传感器网络常常由大量电池资源有限的传感器节点组成.如何降低网络功耗,最大化网络生存时间,是传感器网络拓扑控制技术的重要研究目标.随着传感节点的运行,节点的能量分布可能越来越不均衡,需要在考虑该因素的情况下,动态地调整节点的网络负载以均衡节点的能耗,达到延长网络生存时间的目的.该文引入博弈理论和势博弈的概念,综合考虑节点的剩余能量和节点发射功率等因素,设计了一种基于势博弈的拓扑控制模型,并证明了该模型纳什均衡的存在性.通过构造兼顾节点连通性和能耗均衡性的收益函数,以确保降低节点功耗的同时维持网络的连通性.通过提高邻居节点的平均剩余能量值以实现将剩余能量多的节点选择作为自身的邻居节点,提高节点能耗的均衡性.在此基础上,提出了一种分布式的能耗均衡拓扑控制算法.理论分析证明了该算法能保持网络的连通性.与现有基于博弈理论的DIA算法和MLPT算法相比,本算法形成的拓扑负载较重、剩余能量较小的瓶颈节点数量较少,节点剩余能量的方差较小,网络生存时间更长.  相似文献   

15.
Hydrogen at present is mainly produced from fossil fuels for use in ammonia synthesis, the petrochemical industry, and chemical production. In the future, hydrogen will be increasingly used as an energy vector. Although water electrolysis to produce hydrogen with renewable electricity offers a clean process, the approach is energy intensive, requiring a large renewable resource footprint. Methanol-water co-electrolysis can reduce the energy input by >?50%; its electrochemical oxidation poses complex issues such as poisoning of the catalyst, sluggish oxidation kinetics, and degradation over time. The addition of nano-sized SnO2 to PtRu/C catalyst, to reduce noble metal loading, has been shown here to reduce catalyst leaching and increase the chemical, micro-structural, and performance stability of the methanol-water co-electrolysis process during extended periods of testing. The electrochemical characterization, analysis of the methanol solution, and exit gases, post-cell testing, revealed complete oxidation of methanol with little performance degradation. This is further supported by the stability of the catalyst composition and structure as revealed by the post-mortem XRD and XPS analysis of the cell. The energy balance calculations show that methanol-water co-electrolysis can significantly reduce the renewable energy footprint, and the process can become carbon neutral if bio-methanol is used with renewable electricity.  相似文献   

16.
Energy storage research has drawn much attention recently due to increasing demand for carbon neutral electrical energy from renewable energy sources such as solar, wind, and hydrothermal. Various electrochemical energy storage and conversion technologies are being considered for their integration into smart grid systems, of which batteries seem to play a vital role due to their wide range of energy densities. In this review, we provide the current status and recent advances in solid-state (ceramic) electrolytes based on inorganic compounds for all-solid-state batteries. This paper is specifically focused on the fundamentals, materials, and performances of solid electrolytes in batteries. A wide spectrum of inorganic solid-state electrolytes is presented in terms of their chemical composition, crystal structure, and ion conduction mechanism. Furthermore, the advantages and main issues associated with different types of inorganic solid electrolytes, including β-alumina, NASICON and LISICON-type, perovskites, and garnet-type for all-solid-state batteries are presented. Among these solid electrolytes, Zr and Ta-based Li-stuffed garnets exhibit high Li-ion conductivity, electrochemical stability window (up to 6  V/Li at room temperature), and chemical stability against reaction with molten elemental Li. However, their stability under humidity and carbon dioxide should be improved to decrease the fabrication and operational costs.  相似文献   

17.
Extreme events are a challenge to natural as well as man-made systems. For critical infrastructure like power grids, we need to understand their resilience against large disturbances. Recently, new measures of the resilience of dynamical systems have been developed in the complex system literature. Basin stability and survivability respectively assess the asymptotic and transient behavior of a system when subjected to arbitrary, localized but large perturbations in frequency and phase. To employ these methods that assess power grid resilience, we need to choose a certain model detail of the power grid. For the grid topology we considered the Scandinavian grid and an ensemble of power grids generated with a random growth model. So far the most popular model that has been studied is the classical swing equation model for the frequency response of generators and motors. In this paper we study a more sophisticated model of synchronous machines that also takes voltage dynamics into account, and compare it to the previously studied model. This model has been found to give an accurate picture of the long term evolution of synchronous machines in the engineering literature for post fault studies. We find evidence that some stable fix points of the swing equation become unstable when we add voltage dynamics. If this occurs the asymptotic behavior of the system can be dramatically altered, and basin stability estimates obtained with the swing equation can be dramatically wrong. We also find that the survivability does not change significantly when taking the voltage dynamics into account. Further, the limit cycle type asymptotic behaviour is strongly correlated with transient voltages that violate typical operational voltage bounds. Thus, transient voltage bounds are dominated by transient frequency bounds and play no large role for realistic parameters.  相似文献   

18.
The structure of the chaotic attractor of a system is mainly determined by the nonlinear functions in system equations. By using a new saw-tooth wave function and a new stair function, a novel complex grid multiwing chaotic system which belongs to non-Shil’nikov chaotic system with non-hyperbolic equilibrium points is proposed in this paper. It is particularly interesting that the complex grid multiwing attractors are generated by increasing the number of non-hyperbolic equilibrium points, which are different from the traditional methods of realising multiwing attractors by adding the index-2 saddle-focus equilibrium points in double-wing chaotic systems. The basic dynamical properties of the new system, such as dissipativity, phase portraits, the stability of the equilibria, the time-domain waveform, power spectrum, bifurcation diagram, Lyapunov exponents, and so on, are investigated by theoretical analysis and numerical simulations. Furthermore, the corresponding electronic circuit is designed and simulated on the Multisim platform. The Multisim simulation results and the hardware experimental results are in good agreement with the numerical simulations of the same system on Matlab platform, which verify the feasibility of this new grid multiwing chaotic system.  相似文献   

19.
Although predicting sudden rapid changes of renewable energy outputs is useful for maintaining the stability of power grids with many renewable energy resources, the prediction is difficult so far. Here we list causes for the uncertainty for our prediction, quantify them, and forecast whether such sudden rapid changes are likely to happen or not by integrating their quantifications with a method of machine learning. We test the proposed forecast using a toy model and real datasets of solar irradiance and wind speed.  相似文献   

20.
This paper investigates the resilience of an elementary electricity system (machine-generator) under proportional and derivative (PD) control when subject to large perturbations. A particular attention is paid to small power grids, representative of power grid structure in some developing countries. The considered elementary electricity system consists of a consumer (machine), a power plant (generator) and a transmission line. Both Runge-Kutta and Newton methods are used to solve the dynamical equations and the characteristic equations for stability. It is found that the controller increases the resilience of the system. We also show that time delays associated to the feedback loop of the controller have a negative impact on the performance. It is also shown that the asymmetry due to energy demand of different consumers to power plant increases the stability of the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号