首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Recent simulations have demonstrated that bioparticle size and shape modulate the process of endocytosis, and studies have provided more quantitative information that the endocytosis efficiency of spherocylindrical bioparticles is decided by its aspect ratio. At the same time, the dimensions of the receptor-ligand complex have strong effects on the size-dependent exclusion of proteins within the cellular environment. However, these earlier theoretical works including simulations did not consider the effects of ligand-receptor complex dimension on the endocytosis process. Thus, it is necessary to resolve the effects of ligand-receptor complex dimension and determine the optimal aspect ratio of spherocylindrical bioparticles in the process of endocytosis. Accordingly, we proposed a continuum elastic model, of which the results indicate that the aspect ratio depends on the ligand-receptor complex dimension and the radius of the spherocylindrical bioparticle. This model provides a phase diagram of the aspect ratio of endocytosed spherocylindrical bioparticles, the larger aspect ratio of which appears in the phase diagram with increasing ligand density, and highlights the bioparticle design.  相似文献   

2.
In cell environments crowded with macromolecules, the depletion effects act and assist in the assembly of a wide range of cellular structures, from the cytoskeleton to the chromatin loop, which are well accepted. But a recent quantum dot experiment indicated that the dimensions of the receptor–ligand complex have strong effects on the size-dependent exclusion of proteins in cell environments. In this article, a continuum elastic model is constructed to resolve the competition between the dimension of the receptor–ligand complex and depletion effects in the endocytosis of a spherical virus-like bioparticle. Our results show that the depletion effects do not always assist endocytosis of a spherical virus-like bioparticle; while the dimension of the ligand–receptor complex is larger than the size of a small bioparticle in cell environments, the depletion effects do not work and reverse effects appear. The ligand density covered on the virus can be identified quantitatively.  相似文献   

3.
Recent experiments have pointed out that cellular uptake is strongly dependent on the physical dimensions of endocytosed nanoparticles and tile optimal radius of endocytosed virus-like particle coated by transferrin is around 50 nm. As the same time, the dimensions of receptor-ligand complex have strong effects on the size-dependent exclusion of proteins ill cell environments. Inspired by these experimental results, a continuum elastic model is constructed to resolve the relationship between the dinlensions of receptor-ligand complex and the optimal radius of endocytosed virus-like particle. These results demonstrate that the optimal radius of endocytosed virus-like particle depends on the dimensions of reeeptor-ligand complex and the dimension of receptor-ligand complex reduces the depletion zone.  相似文献   

4.
The presence of magnetic nanoparticles (NPs) in physiological systems induces toxicity through its effects on mitochondrial function and reactive oxygen species (ROS) imbalance. Magnetic NP induced cytotoxicity has been elaborately evaluated for impending threats, however, a detailed investigation is lacking. It is shown that the interaction of Fe3O4 NPs with cytochrome c can lead to different events based on the NPs to protein ratio, the solution conditions, and the type of surface protection. At low NPs concentration, rapid binding and subsequent electron transfer are the preferred events while at higher concentration slow oxidative modification of the protein is initiated. The slow event of protein modification yields conformational disorientation, loss of stability, and formation of amyloid‐like structures with cytochrome c. The possibility that the NP induced oxidative stress and age can work in concert to compromise different aspects of cellular quality control processes is discussed. Suitable surface modifications of the NPs inhibit their direct binding to the protein molecules and minimize NP induced toxicity.  相似文献   

5.
We report an enhancement of antibacterial properties of Ag nanoparticles (NPs) synthesized at room temperature using leaf extract of Azadirachta indica (Neem) following green synthesis route. To study such antibacterial properties Ag NPs of sizes within 9 nm to 17 nm were synthesized by varying the concentration of Neam leaf extract (NLE). The NP size and size distribution were seen to increase and decrease, respectively, with increase in NLE concentration. Also Ag NPs having a fixed size (~26 nm) was also synthesized by varying the precursor (AgNO3) concentration. It is noticed that concentration of NLE has significant effects on the control of NP size as well as size distribution whereas there is almost no role of precursor concentration of the NP size. All the Ag NPs are found to have face-centred-cubic crystal structure with preferential growth along (111) plane which is stable one. The peak of X-ray diffraction at ~32.4° (2θ value), which is prominent for low concentrations of NLE and precursor, is identified as (101) plane of Ag crystal. The generation and growth of Ag NPs had also been confirmed using electron microscopic studies. These Ag NPs show prominent surface plasmon resonance (SPR) absorption at ~ 420 nm confirming again the genesis of Ag NPs. The SPR peak shifts towards longer wavelength (redshift) with a corresponding reduction in full width at half maximum with increase in NP size. All of the samples containing Ag NPs show a broad blue photoluminescence (PL) emission at ~ 471 nm. Emission peak is seen to redshift with increase in NP size and is consistent with the optical absorption data. Such PL emission is argued as due to interband transition or plasmon luminescence. Being biocompatible of the green synthesis process, antibacterial properties of these Ag NPs were studies in details considering all the samples (with varied NP size for one set and with fixed NP size for other set of samples). As per our knowledge this is the first report of size related total study of Ag NPs, showing increased antibacterial effect as size decreased and equal antibacterial effect as size equals. It is found that smaller Ag NPs has enhanced antibacterial effects due to large surface area to volume ratio in comparison with bigger sized Ag NPs.  相似文献   

6.
The manipulation of matter at the nanoscale has unleashed a great potential for engineering biomedical drug carriers, but the transport of nanoparticles (NPs) under nanoscale confinement is still poorly understood. Using colloidal physics to describe NP interactions, we have computationally studied the passive transport of NPs using experimentally relevant conditions from bulk into a nanochannel of 60–90 nm height. NP size, channel height, and the Debye length are comparable so that changes in nanoscale dimensions may induce substantial changes in NP transport kinetics. We show that subtle changes in nanochannel dimensions may alter the energy barrier by about six orders of magnitude resulting in different NP penetration depths and diffusion mechanisms: ballistic, first-order and quasi zero-order transport regimes. The analysis of NP diffusion by continuum methods reveals that apparent diffusivity is reduced by decreasing channel size. The continuum finite element (FE) numerical method reproduced the colloidal model results only when surface interactions were accounted for. These results give a new insight into NP passive transport at the boundaries of nanoconfined domains, and have implications on the design of nanoscale fluidics and NP systems for biomedical and engineering applications.  相似文献   

7.
We change the ellipsoidal boundary in a quantum rod (QR) into a spherical one by a coordinate transformation, and then study the influences of the ellipsoid aspect ratio and polaron radius on the probability density (PD) and oscillation period (OP) of an electron with the variational method of Pekar type (VMPT). By employing the quantum statistics theory (QST), we investigate the temperature effects on the PD and the OP. Numerical results denote that the electron probability density and the oscillation period increase (decay) with raising temperature in lower (higher) temperature regime. The electron probability density increases (decreases) with increasing ellipsoid aspect ratio when the temperature is in lower (higher) regime. The electron probability density decays (enhances) with increasing polaron radius when the temperature is in lower (higher) temperature regime. The oscillation period is an increasing function of the ellipsoid aspect ratio, whereas it is a decreasing one of the polaron radius.  相似文献   

8.
Cheng MT  Liu SD  Zhou HJ  Hao ZH  Wang QQ 《Optics letters》2007,32(15):2125-2127
We studied theoretically the exciton coherent dynamics in the hybrid complex composed of CdTe quantum dot (QDs) and rodlike Au nanoparticles (NPs) by the self-consistent approach. Through adjusting the aspect ratio of the rodlike Au NPs, the radiative rate of the exciton and the nonradiative energy transfer rate from the QD to the Au NP are tunable in the wide range 0.05-4 ns(-1) and 4.4 x 10(-4) to 2.6 ns(-1), respectively; consequently, the period of Rabi oscillations of exciton population is tunable in the range 0.6 pi-9 pi.  相似文献   

9.
彭颖吒  李泳  郑百林  张锴  徐咏川 《物理学报》2018,67(7):70203-070203
硅作为锂离子电池阴极材料相对于传统负极材料具有高比容量,价格低廉等优势.本文针对充电过程中锂离子电池中电极建立力学模型和扩散模型,并在扩散模型引入考虑介质膨胀速率的影响.以硅空心柱形电极为例,分析了恒流充电下介质膨胀速率对电极中扩散诱导应力分布的影响,并研究了不同内外半径比、充电速率、材料参数以及锂化诱导软化系数(lithiation induced softening factor,LISF)对轴向的支反力达到临界欧拉屈曲力所需时间的影响.结果表明,随着电极中锂浓度上升,介质膨胀速率对应力分布的影响增大,对轴向的支反力影响较小.弹性模量和应力成正比,但其与轴向的支反力达到临界欧拉屈曲力所需时间无关;扩散系数与所需时间成反比;偏摩尔体积增大时,达到临界屈曲力所需时间减少;随着LISF绝对值增大,完全锂化时轴向力降低.  相似文献   

10.
Human health risks by silver nanoparticle (AgNP) exposure are likely to increase due to the increasing number of NP-containing products and demonstrated adverse effects in various cell lines. Unfortunately, results from (toxicity) studies are often based on exposure dose and are often measured only at a fixed time point. NP uptake kinetics and the time-dependent internal cellular concentration are often not considered. Macrophages are the first line of defense against invading foreign agents including NPs. How macrophages deal with the particles is essential for potential toxicity of the NPs. However, there is a considerable lack of uptake studies of particles in the nanometer range and macrophage-like cells. Therefore, uptake rates were determined over 24 h for three different AgNPs sizes (20, 50 and 75 nm) in medium with and without fetal calf serum. Non-toxic concentrations of 10 ng Ag/mL for monocytic THP-1 cells, representing realistic exposure concentration for short-term exposures, were chosen. The uptake of Ag was higher in medium without fetal calf serum and showed increasing uptake for decreasing NP sizes, both on NP mass and on number basis. Internal cellular concentrations reached roughly 32/10 %, 25/18 % and 21/15 % of the nominal concentration in the absence of fetal calf serum/with fetal calf serum for 20-, 50- and 75-nm NPs, respectively. Our research shows that uptake kinetics in macrophages differ for various NP sizes. To increase the understanding of the mechanism of NP toxicity in cells, the process of uptake (timing) should be considered.  相似文献   

11.
The spontaneous emission rate of a two-level quantum emitter(QE)near a gold nanorod is numerically investigated.Three different optical response models for the free-electron gas are adopted,including the classical Drude local response approximation,the nonlocal hydrodynamic model,and the generalized nonlocal optical response model.Nonlocal optical response leads to a blueshift and a reduction in the enhancement of the spontaneous emission rate.Within all the three models,the resonance frequency is largely determined by the aspect ratio(the ratio of the nanorod length to the radius)and increases sharply with decreasing aspect ratio.For nanorod with a fixed length,it is found that the larger the radius is,the higher the resonance frequency is,and the smaller the enhancement is.However,if the length of the nanorod increases,the peak frequency falls sharply,while the spontaneous emission enhancement grows rapidly.For nanorod with a fixed aspect ratio,the peak frequency decreases slowly with increasing nanorod size.Larger nanorod shows smaller nonlocal effect.At a certain frequency,there is an optimal size to maximize the enhancement of the spontaneous emission rate.Higher order modes are more affected by the nonlocal smearing of the induced charges,leading to larger blueshift and greater reduction in the enhancement.These results should be significant for investigating the spontaneous emission rate of a QE around a gold nanorod.  相似文献   

12.
The synthesis of gold nanoparticles (Au NPs) capped by poly(1‐vinylpyrrolidin‐2‐one (PVP, average  = 10 000 kDa) yields moderately dispersed (6–8.5 nm) product with limited morphological control while larger NPs (15–20 nm) are reliably prepared using trisodium citrate (Na3Cit) as a reductant/capping agent. Excellent size control in the intermediate 10 nm regime is achieved by hybridizing these methodologies, with highly monodisperse, polycrystalline Au NPs forming. For a Na3Cit:PVP:Au ratio of 3.5:3.5:1, anisotropic NPs with an aspect ratio of 1.8:1 suggest the systematic agglomeration of NP pairs. Enhanced control of NP morphology is allowed by the 1,2‐tetradecanediol reduction of AuIII in the presence of straight chain, molecular anti‐agglomerants. Last, ligand substitution is used to controllably grow preformed Au seeds. In spite of the extended growth phase used, the replacement of phosphine by 1‐pentadecylamine affords highly monodisperse, cuboidal NPs containing a single clearly visible twinning plane. The allowance of particle growth parallel to this close‐packed plane explains the remarkable particle morphology.  相似文献   

13.
We investigate the crossover from three to two dimensions for harmonically trapped hard-sphere Bose gases by varying the aspect ratio of the trapping potential. The diffusion Monte Carlo method is used to calculate both the ground-state energy and structural properties. The effect of trap anisotropy, interparticle interaction, and number of particles on the ground-state properties is discussed. Our results show that the minimum value of the aspect ratio at which the system reaches an asymptotic equilibrium distribution in the weakly confined direction decreases with increasing scattering length, while the minimum value of the aspect ratio at which the system enters the quasi-two-dimensional (2D) regime increases as both the scattering length and the number of particles increase. Additionally, the role played by particle correlations is proved to be more pronounced in the quasi-2D system than in the three-dimensional (3D) system by directly comparing the ground-state properties for the two cases.  相似文献   

14.
The ZnO nanowire (NW) array/TiO2 nanoparticle (NP) composite photoelectrode with controllable NW aspect ratio has been grown from aqueous solutions for the fabrication of dye-sensitized solar cells (DSSCs), which combines the advantages of the rapid electron transport in ZnO NW array and the high surface area of TiO2 NPs. The results indicate that the composite photoelectrode achieves higher overall photoelectrical conversion efficiency (η) than the ZnO NW alone. As a result, DSSCs based on the ZnO NW array/TiO2 NP composite photoelectrodes get the enhanced photoelectrical conversion efficiency, and the highest η is also achieved by rational tuning the aspect ratio of ZnO NWs. With the proper aspect ratio (ca. 6) of ZnO NW, the ZnO NW array/TiO2 NP composite DSSC exhibits the highest conversion efficiency (5.5 %). It is elucidated by the dye adsorption amount and interfacial electron transport of DSSCs with the ZnO NW array/TiO2 NP composite photoelectrode, which is quantitatively characterized using the UV-Vis absorption spectra and electrochemical impedance spectra. It is evident that the DSSC with the proper aspect ratio of ZnO NW displays the high dye adsorption amount and fastest interfacial electron transfer.  相似文献   

15.
A simple fabrication method is demonstrated for surface‐enhanced Raman scattering (SERS)‐active plasmonic nanoballs, which consisted of Au nanoparticles (NPs) and core–shell polystyrene and amino‐terminated poly(butadiene) particles, by heterocoagulation and Au NP diffusion. The amount of Au NPs introduced into the core–shell particles increases with the concentration of Au NPs added to the aqueous dispersion of the core–shell particles. When the amount of Au NPs increases, closely packed, three‐dimensionally arranged and close‐packed Au NPs arrays are formed in the shells. Strong SERS signals from para‐mercaptophenol adsorbed onto composite particles with multilayered Au NPs arrays are obtained by near‐infrared (NIR) light illumination.  相似文献   

16.
Helical nanoparticle (NP) superstructures are an important class of chiral NP assemblies. The nature of the constituent NPs (size and shape) within these assemblies dictates their optical properties. However, the construction of helical NP superstructures consisting of various anisotropic NPs remains challenging. Here, a set of cetyltrimethylammonium bromide derivatives is employed to transform constituent spherical gold NPs (≈3 nm) within a chiral single‐helical assembly into gold nanoprisms (edge length ? 10 nm). Careful optimization of this strategy may lead to designed chiral NP architectures with tunable optical properties.  相似文献   

17.
The physico-chemical properties of nanoparticles (NPs), such as small dimensions, surface charge and surface functionalization, control their capability to interact with cells and, in particular, with sub-cellular components. This interaction can be also influenced by the adsorption of molecules present in biological fluids, like blood, on NP surface. Here, we analysed the effect of serum proteins on 49 and 100 nm red fluorescent polystyrene NP uptake in porcine aortic endothelial (PAE) cells, as a model for vascular transport. To this aim, NP uptake kinetic, endocytic pathway and intracellular trafficking were studied by monitoring NPs inside cells through confocal microscopy and multiple particle tracking (MPT). We demonstrated that NPs are rapidly internalized by cells in serum-free (SF) medium, according to a saturation kinetic. Conversely, in 10% foetal bovine serum-enriched (SE) medium, NP uptake rate results drastically reduced. Moreover, NP internalization depends on an active endocytic mechanism that does not involve clathrin- and caveolae-mediated vesicular transport, in both SE and SF media. Furthermore, MPT data indicate that NP intracellular trafficking is unaffected by protein presence. Indeed, approximately 50–60% of internalized NPs is characterized by a sub-diffusive behaviour, whereas the remaining fraction shows an active motion. These findings demonstrate that the unspecific protein adsorption on NP surface can affect cellular uptake in terms of internalization kinetics, but it is not effective in controlling active and cellular-mediated uptake mechanisms of NPs and their intracellular routes.  相似文献   

18.
In this work, uniform, quasi‐spherical gold nanoparticles (Au NPs) with sizes of 31–577 nm are prepared via one‐pot seeded growth with the aid of tris‐base (TB). Distinct from the seeded growth methods available in literature, the present method can be simply implemented by subsequently adding the aqueous dispersion of the 17 nm Au‐NP seeds and the aqueous solution of HAuCl4 into the boiling aqueous TB solution. It is found that at the optimal pH range, the sizes of the final Au NPs and their concentrations are simply controlled by either the particle number of the Au seed dispersion or the concentration of the HAuCl4 solution, while the latter enables us to produce large Au NPs at very high concentration. Moreover, as‐prepared Au NPs of various sizes are coated on glass substrates to test their surface‐enhanced Raman scattering (SERS) activities by using 4‐aminothiophenol (4‐ATP) molecules as probes, which exhibit “volcano type” dependence on the Au NP sizes at fixed excitation wavelength. Furthermore, the Au NPs with sizes of ≈97 and 408 nm exhibit the largest SERS enhancement at the excitation wavelength of 633 and 785 nm, respectively.  相似文献   

19.
The effects of metal core dimension, oxide shell thickness and ellipsoid aspect ratio of Al-Al2O3 core-shell nanoparticles on the near-infrared and visible absorption spectra of nanocomposite Al-Al2O3/nitrocellulose(NC) film are investigated by numerical calculations. Both the size-dependent interband transitions and frequency-dependent free electron damping of the nanometallic aluminium are taken into account in the calculations. Oxidation effect of nanoaluminium is also analysed. It is shown that oxidation may enhance but may also reduce the optical absorption, depending on the excited light energy and initial dimension of nanoparticle. Metal core size and excited light energy dominate the absorption characteristic. The absorption ability of ellipsoidal nanoparticles is larger than that of spheroidal nanoparticles and increases by the square index as the aspect ratio increases. These calculations will provide some significant theoretical guidance for the preparation and laser ignition of nanoenergetic materials.  相似文献   

20.
Metal nanoparticles (NPs), chalcogenides, and carbon quantum dots can be easily synthesized from whole microorganisms (fungi and bacteria) and cell-free sterile filtered spent medium. The particle size distribution and the biosynthesis time can be somewhat controlled through the biomass/metal solution ratio. The biosynthetic mechanism can be explained through the ion-reduction theory and UV photoconversion theory. Formation of biosynthetic NPs is part of the detoxification strategy employed by microorganisms, either in planktonic or biofilm form, to reduce the chemical toxicity of metal ions. In fact, most reports on NP biosynthesis show extracellular metal ion reduction. This is important for environmental and industrial applications, particularly in biofilms, as it allows in principle high biosynthetic rates. The antimicrobial and antifungal effect on biosynthetic NPs can be explained in terms of reactive oxygen species and can be enhanced by the capping agents attached to the NP during the biosynthesis process. Industrial applications of NP biosynthesis are still lagging, due to the difficulty of controlling NP size and low titer. Further, the environmental assessment of biosynthetic NPs has not yet been carried out. It is expected that further advancements in biosynthetic NP research will lead to applications, particularly in environmental biotechnology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号