首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 305 毫秒
1.
The effect of Cr addition on electrodeposited multilayered nanowires CrFeCoNi/Cu was investigated from a magnetic property perspective: current perpendicular to the plane-Giant Magnetoresistance (CPP-GMR) and Coercivity (BH loops). The magnetic behavior of multilayered nanowires of CrFeNiCo/Cu was also affected by the alloy deposition potential, alloy pulsing time (layer thickness) and number of bilayers. Furthermore, the addition of Cr influenced both the nanowires GMR and Coercivity. Cr addition to the ferromagnetic FeCoNi layer induced a reduction in the room temperature GMR from 10.64% to 5.62%; however, the magnetic saturation field decreased from 0.45 to 0.27 T. The increase in the number of bilayers, from 1000 to 2500, resulted in a higher GMR value, 14.56% with 0.35 T magnetic saturation field. Addition of Cr to the ferromagnetic layer decreased the coercivity from 0.015 to 0.0054 T. Low saturation field CPP-GMR nanowires showing low coercivity at room temperature opens a new door for magnetic sensing devices. To the best of our knowledge, this is the first study on electrodeposited CrFeCoNi/Cu multilayered nanowires.  相似文献   

2.
Multilayered magnetic Co/Cu and NiFe/Cu nanowires were grown via template-assisted electrodeposition. Structures were described by means of focused ion beam/scanning electron microscopy and energy dispersive X-ray spectroscopy.  相似文献   

3.
Permalloy (Ni80Fe20)/Cu multilayered nanowires (NWs) were electrodeposited using a template directed method from sulfate baths via pulse potential technique. Microstructures and compositions of the nanowires were characterized using various microscopy and spectroscopy techniques. To synthesize compositionally uniform nanowires with high efficiency, new sulfate baths with a high content of Ni2+ were developed. The effects of deposition potential and concentration of metal ions were optimized to reduce composition inhomogeneity and incorporation of copper in the permalloy layers. Composition of the NiFe layers was found to be close to 20 at% Fe with a maximum of 5 at% Cu. TEM analysis indicated that individual nanowires exhibit distinct and coherent layering structure with rough and wavy interfaces. A synthesized single nanowire was also AC dielectrophoretically assembled across the microfabricated gold electrodes for subsequent magnetoresistance measurements.  相似文献   

4.
云母模板中Cu纳米线的制备及其光学性质研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用快重离子辐照的单晶白云母片产生潜径迹,蚀刻得到直径在30—180 nm纳米孔道. 孔道形状依赖于蚀刻时间,蚀刻时间短得到圆柱形孔道,蚀刻时间长得到菱柱形孔道. 从而在云母模板孔道中电化学沉积得到不同直径和形状的Cu纳米线. 通过紫外可见光谱分析,发现铜纳米线的尺寸和形状影响其光学性质. 直径小于60 nm的近似为圆柱状Cu纳米线有一个明显的表面等离子体共振峰和一个微弱的次峰. 随着直径增加,菱柱状的Cu纳米线主峰有明显的红移,次峰逐渐增强. 同时利用扫描电子显微镜、X射线衍射对Cu纳米线的形貌和晶体结构特征进行了表征. 关键词: Cu纳米线 电化学沉积 光学性质 云母模板  相似文献   

5.
Ordered Co/Cu multilayer nanowire arrays have been fabricated into anodic aluminium oxide templates with Ag and Cu substrate by direct current electrodeposition. This paper studies the morphology, structure and magnetic properties by transmission electron microscopy, selective area electron diffraction, x-ray diffraction, and vibrating sample magnetometer. X-ray diffraction patterns reveal that both as-deposited nanowire arrays films exhibit face-centred cubic structure. Magnetic measurements indicate that the easy magnetization direction of Co/Cu multilayer nanowire arrays films on Ag substrate is perpendicular to the long axis of nanowire, whereas the easy magnetization direction of the sample with Cu substrate is parallel to the long axis of nanowire. The change of easy magnetization direction attributed to different substrates, and the magnetic properties of the nanowire arrays are discussed.  相似文献   

6.
含分枝铜纳米线多孔铝膜的偏振特性   总被引:1,自引:0,他引:1       下载免费PDF全文
利用二次阳极氧化法制备了具有分枝结构的多孔铝(PAA)模板,并以交流电化学沉积的方法在该模板中合成了分枝状的铜纳米线。用SEM观察样品的形貌结构,用分光光度计测量了样品的透射光谱和偏振光谱。实验结果表明,含分枝状铜纳米线结构的多孔铝膜在近红外光区具有较高的透射率,且得到了14~22 dB的消光比。这种微偏振器件制备方法简单、效率高、造价低,在光电集成领域有着广泛的应用前景。  相似文献   

7.
The magnetization reversal of electrodeposited CoNi/Cu multilayer nanowires patterned in an array using a hole template has been investigated. The reversal mode is found to depend on the CoNi layer thickness t(CoNi); with increasing t(CoNi) a transition occurs from coherent rotation to a combination of coherent and incoherent rotation at around t(CoNi)=51 nm. The reversal mode has been identified using the magnetic hysteresis loops measured at room temperature for CoNi/Cu nanowires placed at various angles between the directions of the nanowire axis and external fields using a vibrating sample magnetometer. The nanowire samples have a diameter of ∼250 nm and constant Cu layer thickness of 4.2 nm with various t(CoNi) ranging from 6.8 nm to 7.5 μm. With increasing t(CoNi), the magnetic easy axis moves from the direction perpendicular to nanowires to that parallel to the nanowires at around t(CoNi)=51 nm, indicating a change in the magnetization reversal mode. The reversal mode for the nanowires with thin disk-shaped CoNi layers (t(CoNi)=6.8, 12 and 17 nm) is of a coherent rotation type, while that for long rod-shaped CoNi layers (t(CoNi)=150 nm, 1.0, 2.5 and 7.5 μm) can be consistently explained by a combination of coherent rotation and a curling mode. The effects of dipole–dipole interactions between nanowires and between adjacent magnetic layers in each nanowire on the reversal process have been discussed.  相似文献   

8.
Ultrathin epitaxial Fe films on Cu(1 0 0) with perpendicular magnetization have been used as templates for the preparation of FCC Fe/Cu/Fe trilayers. The magnetic anisotropy and the coupling of these films have been studied by in-situ magneto optical Kerr effect measurements and Kerr microscopy. The magnetic coupling of both Fe layers is found to be dominated by magnetostatic interaction. Adsorbate-induced spin reorientation in the top layer also causes spin reorientation in the bottom layer. The governing role of the Fe-vacuum interface for the magnetism of the whole trilayer is demonstrated.  相似文献   

9.
 采用多孔阳极氧化铝(AAO)模板脉冲电沉积法制备了强辐射源用铜纳米线阵列靶,并用扫描电子显微镜(SEM)、能谱(EDS)和X射线衍射(XRD)对其进行了结构表征。结果表明:去除AAO模板后铜纳米线平均直径比去除AAO模板前的平均孔径大32%,长度缩短5%。对电沉积2 000 s的样品进行铜纳米线长度分布表征,结果显示:距离模板圆心越远,铜纳米线越长。与超短脉冲激光相互作用实验结果表明:纳米线平均长度在18~50 μm范围内,铜Kα光子产额先随纳米线长度增加而增加,当长度大于33 μm时,铜Kα光子产额开始下降。  相似文献   

10.
Porous anodic alumina (PAA) templates with branch structure are fabricated by the two-step anodic oxidation processes, and then the Y-branched Cu nanowires are synthesized in the templates using an alternating current (AC) deposition method. We observe the morphology image of the samples by scanning electron microscopy (SEM), and measure the transmission spectrum and the polarization spectrum of the samples by the spectrophotometer. The results show that PAA films with Y-branched Cu nanowires have better transmittance in the near infrared region. An extinction ratio of 15-18 dB and an insertion loss of 0.1-0.4 dB are obtained in this region. Therefore PAA with Y-branched Cu nanowires can be used as a near-infrared micropolarizer, and this kind of micropolarizer would have a promising future in the field of photoelectricity integration.  相似文献   

11.
By using the first-principles calculations, we have systematically investigated the equilibrium structure, magnetic and electronic properties of one-dimensional Fe/Cu multilayered nanowires. We find that the stability of the Fe/Cu multilayered nanowires decreases with increasing concentration of nonmagnetic Cu layers, suggesting that rich Fe nanowires are more stable. Analysis of the average magnetic moment (μav) per Fe atom in the Fe/Cu multilayered nanowire suggests that there is a slight increase in μav with the increase in the number of nonmagnetic Cu layers, which was attributed to the increased Fe–Cu distance with increase in the Cu layers at interfacial layers. Furthermore, analysis of the band structures of these nanowires suggests strong dependence of conductance on the nonmagnetic Cu spacer layer thickness and a half-metallic character is observed for moderate Cu atoms substitutions, opening up the possibility for their application in magnetoelectronics or spintronics.  相似文献   

12.
Arrays of Ag/Cu alloy nanowires embedded in anodic alumina membranes (AAMs) were synthesized by directly electrodepositing from a mixing electrolyte solution containing Ag+ and Cu2+ ions. Manipulations of optical properties of the resulting samples were successfully achieved by tuning the molar ratio of Ag+ and Cu2+ ions in the starting materials. When the ratio is less than 2:20, two surface plasma resonance (SPR) peaks corresponding to Ag and Cu appear, respectively. After annealing treatment, the SPR peak corresponding to Cu disappears, and that of Ag presents a red shift. Furthermore, this red shift can be up to 85 nm when the molar ratio of Ag+ and Cu2+ reduce to 1:20, which is attributed to the transferable electrons from Cu atoms.  相似文献   

13.
Cu nanowire arrays have been synthesized using potentiostatic electrodeposition within the confined nanochannels of a porous anodic alumina membrane. The Cu nanowire arrays and the individual nanowires have been characterized using SEM, TEM, SAED, HREM and XRD. Investigation results reveal that the Cu nanowire arrays having high wire packing densities are highly ordered over large areas. The individual Cu nanowires (diameter ∼60 nm) were single-crystal and found to be dense and continuous with uniform diameters throughout their entire length. An optimum ECD condition (at lower overpotentials) for the synthesis of single-crystal Cu nanowires was also discussed. Received: 19 April 2001 / Accepted: 28 April 2001 / Published online: 20 June 2001  相似文献   

14.
Metallic (Ni, Co, Cu and Fe) nanowires were fabricated by electrodeposition into anodic aluminum oxide (AAO) template. In this work, we have studied the effect of the electrode potential on the microstructure and magnetic properties of nanowires. Transmission electron microscopy (TEM) results showed that the metal nanowires were single-crystal. Cu and Ni nanowires had the same orientation along the [2 2 0] direction, while Co had a preferred orientation along the [1 0 0] direction. Fe nanowires had a preferred orientation along the [2 0 0] direction. The growth mechanisms are probably due to the competition growth of the adjacent grains and the confinement of growth in the nano-sized hole of the AAO template. Results showed that single crystal or highly textured nanowires had better magnetic properties compared with that of polycrystal nanowires in terms of coercivity and squareness.  相似文献   

15.
The structural and morphological properties of epitaxial Cu/Si(0 0 1) type of structures have been investigated by a combination of electron, X-ray and scanning probe imaging techniques. Auger electron spectroscopy measurements indicate the presence of Si in the Cu layer for Cu thicknesses up to 10 nm. In addition, X-ray scattering results show that there is a mosaic spread in the Cu(0 0 1) crystal which decreases as the Cu thickness increases, from 8° at 15 nm to 4.5° at 100 nm. This behaviour is corroborated by reflection high energy electron diffraction patterns of the Cu surface measured during growth, which exhibit a twinning in the diffraction spots for the 15 and 30 nm Cu films. Atomic force and scanning electron microscopy imaging of Cu(4 nm)/Co(7,17 nm)/Cu(100 nm)/Si(0 0 1) structures allow one to visualise and characterise the sample surface in real space; from these measurements, an average roughness amplitude of ∼0.5 nm and a correlation length of ∼50 nm are obtained. Our results provide a better understanding of an important system which has been widely used as a template for the growth of epitaxial ultrathin magnetic films.  相似文献   

16.
Thomson  T.  Riedi  P.C. 《Hyperfine Interactions》1999,120(1-8):23-30
59Co NMR studies of multilayers are able to give three direct pieces of information: (i) the crystal phase of Co, fcc (217.4 MHz), hcp (220–228 MHz) and in exotic cases bcc (198 MHz) for films measured at T= 4.2 K, (ii) the nature of the interfaces from low frequency satellite lines, and (iii) the strain state deduced from small changes in the line positions. Extensive studies of Co/Cu multilayer interfacial structures as a function of deposition technique, layer thickness, substrate/buffer layer structure and annealing temperature have been undertaken. This work has shed new light on the relationship between interfacial structure and magnetoresistance and in particular has demonstrated that flat, atomic scale, interfaces lead to greater magnetoresistance. The difference between the Co and Cu lattice constant results in an extensive, tensile in-plane strain developing in Co layers provided that some epitaxial registry is present. Information on strain effects can be obtained from the position and width of the NMR lines. The magnetic anisotropy field can be determined by measuring the field dependence of the enhancement effect due to electronic magnetisation. This provides unique insight into the distribution of magnetic anisotropy within the Co layers, as the enhancement can be investigated independently for each NMR line and, hence, provides environment specific information on magnetic anisotropy at the interfaces and in the interior of the layers. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
<正>According to ultraviolet(UV)-vis absorption spectra recorded in the DNA metallization process,DNA-templated Co/Cu binary nanoparticle chains are fabricated by incubating genome DNA of paralichthys olivaceus muscle in CoCl_2 and CuCl_2 mixture solution for 20 hours and reducing the complex for 2 hours.Transmission electron microscopy observation indicates that Co and Cu nanoparticles with 20 nm in diameter were randomly dispersed on the DNA template. The superconducting quantum interference device(SQUID) measurements display that the magnetic interaction between cobalt particles is greatly decreased by the copper particle.With increasing copper content,the coercivity of the systems enhance from 9 Oe to 100 Oe(1 Oe=79.5775 A/m).  相似文献   

18.
李铁  沈鸿烈 《中国物理》2002,11(1):54-57
In this paper,we have obtained and investigated the magnetic behaviours of the ferromagnetic layer in the symmetric spin valves of Co/Cu/NiFe and NiFe/Cu/Co by measuring with a vibrating sample magnetometer and analysing in terms of the multi-domain Ising models.It has been found that some magnetic layer can have quite different magnetic behaviours in different structures of spin valves,depending on the properties of the under-layer.In our investigation,we have found that the magnetic behaviour of a Co layer depends mainly on the magnetization of the under-layer,whereas this is not the case for the NiFe layer.  相似文献   

19.
After chemical mechanical planarization (CMP), the reason which caused the formation of Cu-oxide defects at the interface between Cu deposit and TaN barrier layer has been studied. The experimental results of atomic force microscopy, secondary ion mass spectroscopy, X-ray diffraction demonstrated that the agglomeration phenomenon was found on Cu seed in the thickness of only 10 nm, thus resulting in the electrodeposited Cu film with more abundant C impurities at Cu/TaN interface and lower (1 1 1)/(2 0 0) ratio compared to the thick one (30 nm). Therefore it caused the Cu deposit with poor corrosion resistance and then the Cu-oxide defects were easily formed after CMP. As a result, the correlation between Cu-oxide defects at the Cu/TaN interface and the agglomeration on Cu seed layer was proposed herein.  相似文献   

20.
Magnetic characteristics of arrays of Ni nanowires embedded in porous alumina are reviewed as a function of their spatial ordering. The different steps for the controlled production of highly-ordered nanowires is firstly described. Nanopores are formed into an hexagonal symmetry arrangement by self-organized process during anodization of pure Al. Parameters of the anodization allow us to control their diameter, hexagonal lattice parameter and size of crystalline domains. Subsequently, Ni nanowires are grown inside the pores by electrodeposition. Control of the pores filling and of geometrical ordering characteristics has been performed by SEM, HRSEM, RBS and AFM techniques. The magnetic characterisation of the arrays has been achieved by SQUID and VSM magnetometers, while information on the magnetic state of individual nanowires is obtained by MFM. Experimental studies are presented, particularly coercivity and remanence, for arrays with different degree of ordering (crystalline domains up to around 1 m), and for ratio diameter to lattice parameter (diameter ranging between 20 and 180 nm, and distance between 35 and 500 nm). FMR studies have allows us to obtain complementary information of the anisotropy and magnetic characteristics. A modelling of multipolar interacting nanowires is introduced to account for the influence of short and long range ordering degree of the arrays.Received: 24 November 2003, Published online: 15 June 2004PACS: 75.60.Jk Magnetization reversal mechanisms - 81.15.Pq Electrodeposition, electroplating  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号