首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为抑制水介质管路系统低频噪声,兼顾结构的紧凑性,提出弹性背腔微穿孔管路消声结构,弹性管壁为橡胶帘线复合材料,并推导了传递损失的数值解法。首先,基于Biot-Allard多孔弹性理论,将弹性微穿孔板等效为弹性多孔材料;然后,利用双尺度法建立帘布的周期性代表单元,求得其刚度矩阵;接着,基于分层理论,建立弹性管壁的多层复合材料模型,并与内部声场耦合计算,得到弹性背腔微穿孔管路消声器的传递损失。在水介质驻波管中,利用双声源法测量弹性背腔微穿孔管路消声器样机的传递损失曲线,并与扩张式管路消声器和刚性背腔微穿孔管路消声器进行对比,理论结果与试验结果吻合良好。研究表明,弹性背腔微穿孔管路消声器属于反射耗散复合式消声器,具有低频域、宽频带的消声特性。样机B2在40~300 Hz和40~1200 Hz频段内的传递损失分别为36 dB和30 dB,而相同尺寸扩张式消声器在对应频段的传递损失分别为7 dB和11 dB。   相似文献   

2.
Helmholtz resonator is often used to reduce noise in a narrow frequency range. To obtain a broader noise attenuation band, combing several resonators is a possible way. This paper presents a theoretical study of sound propagation in a one-dimensional duct with identical side-branch resonators mounted periodically. The analysis of each resonator was based on a distributed-parameter model that considered multi-dimensional wave propagation in its neck-cavity interface. This model provided a more accurate prediction of the resonant frequency of the resonator than traditional lumped-parameter model. Bloch wave theory and the transfer matrix method were used to investigate wave propagation in these spatially periodic resonators. The results predicted by the theory fit well with the computer simulation using a three-dimensional finite element method and the experimental results. This study indicates that the wave coupling in this periodic system results in the dispersion of the frequency band into the stop and the pass bands. The long-term significance is that periodic resonators may more effectively control noise in ducts by broadening the bandwidth they attenuate and increasing the magnitude of sound attenuation.  相似文献   

3.
I.lntroductionTheac0usticperformanccofmicropcrforatedmumerhasbeengreatlynoticedinre-ccntyears.Especially,itshighsi1encingva1ueandbroadsi1encingfrequencyrangeenableittobeusedwidelyinmanyyiclds,suchasvehicleexhaustsystem,ventilator.Butitisdifficulttodesignagoodsilcnccrbecauseoritscomp1exacousticperformanccwithinPerforatedtubes.Thegoverningwaveequationofmicroperforatedmufflerisnotlinearduetothenonuniformmassflowofgasaswc11asthetcmpcraturegradientalongthePerforatedducts.Inordertoutilizethegoodsi…  相似文献   

4.
Helmholtz resonators are widely used to reduce noise in a fluid-filled pipe system. It is a challenge to obtain lowfrequency and broadband attenuation with a small sized cavity. In this paper, the propagation of acoustic waves in a fluid-filled pipe system with periodic elastic Helmholtz resonators is studied theoretically. The resonance frequency and sound transmission loss of one unit are analyzed to validate the correctness of simplified acoustic impedance. The band structure of infinite periodic cells and sound transmission loss of finite periodic cells are calculated by the transfer matrix method and finite element software. The effects of several parameters on band gap and sound transmission loss are probed.Further, the negative bulk modulus of periodic cells with elastic Helmholtz resonators is analyzed. Numerical results show that the acoustic propagation properties in the periodic pipe, such as low frequency, broadband sound transmission, can be improved.  相似文献   

5.
范一良  季振林 《声学学报》2022,47(5):675-685
为计算和分析具有复杂结构的阻抗复合式消声器的宽频消声性能,建立了一种高效声学有限元方法,给出了不同边界条件下的边界积分处理细节,得到有限元全局系数矩阵表达式,设计出计算程序框架以实现这些算法,其求解规模和计算速度与商业软件相比有优势。为计算阻抗复合式消声器的传递损失,通过阻抗管测量和数据拟合得到了吸声材料声学特性的经验公式。计算和测量了两通穿孔阻抗复合式消声器的传递损失,二者良好的吻合验证了声学有限元方法和计算程序的正确性。研究表明,插管长度影响消声器在中高频段的消声特性,右侧隔板上穿孔会消除共振峰,中高频消声性能随着出口管穿孔率的增加而提升。   相似文献   

6.
The purpose of this study is to explore the effects of sound elimination in a cylindrical duct by combining a reactive muffler and active noise control (ANC) system. Besides the exploration via experiment of the combined noise control system, a Grey prediction based on Grey theory is also applied to ANC for this hybrid system.In the experiment for this system, a combined adaptive algorithm is adopted. The results of sound elimination are compared between cases with ANC systems installed before the muffler and after the muffler. The results indicate that the sequence of arrangement of muffler can influence the results of active noise control. According to the results of experiment and simulation, the effect of noise reduction in ANC system is influenced extremely by reference signal received. The transmission loss and insertion loss in this system are also discussed in details. Besides, the experimental results indicate that the hybrid system has the advantages over a traditional muffler when the muffler is not designed for the frequency of the noise. Furthermore, the mathematic simulation for acoustic field in a cylindrical duct with a muffler is performed in order to verify the experiment results. Finally, Grey theory is applied to estimate the expected signals in order to perform a computer simulation of Grey prediction to explore effects of the ANC system. The results indicate that application of Grey theory gives a good control for the hybrid system.  相似文献   

7.
针对管道内低频噪声难以抑制的问题,本文基于亥姆霍兹共振腔(HR)阵列吸声板和穿孔管消声器组合,设计了一种复合式宽带消声器。首先利用有限元法仿真分析传统穿孔管消声器,发现中低频消声能力较差,通过嵌入HR阵列吸声板吸收中低频噪声。采用仿真与实验的方式研究吸声板的声学性能:在400-1000 Hz频段内的平均吸声系数达到了0.88。然后对复合式消声器进行数值模拟及3D打印阻抗管实验测试对比:复合式消声器在400-1718Hz频率范围内的平均传递损失为18.15 dB ,最终实现了管道内全频带噪声有效控制。  相似文献   

8.
切向流对微穿孔共振吸声结构声学性能的影响   总被引:1,自引:0,他引:1  
王佐民  蔺磊  姜在秀 《声学学报》2009,34(4):350-354
切向流对微穿孔共振吸声结构声学性能的影响可以分成三类:(1)对小孔辐射声抗的影响;(2)对结构斜入射吸声性能的影响;(3)对消声通道消声性能的影响。根据声学基本理论,详细讨论这些影响,得到对应的理论分析公式。定性而言,若声波的传播方向与气流的运动方向一致,小孔外侧的辐射声抗、空腔声阻抗函数coth (ξ)的宗量ξ赋值和消声通道的消声系数都会减小;同时呈现多普勒效应,使得结构的吸声系数共振峰频率向低频移动。理论分析得到相应实验研究的支持。   相似文献   

9.
Short elliptical chamber mufflers are used often in the modern day automotive exhaust systems. The acoustic analysis of such short chamber mufflers is facilitated by considering a transverse plane wave propagation model along the major axis up to the low frequency limit. The one dimensional differential equation governing the transverse plane wave propagation in such short chambers is solved using the segmentation approaches which are inherently numerical schemes, wherein the transfer matrix relating the upstream state variables to the downstream variables is obtained. Analytical solution of the transverse plane wave model used to analyze such short chambers has not been reported in the literature so far. This present work is thus an attempt to fill up this lacuna, whereby Frobenius solution of the differential equation governing the transverse plane wave propagation is obtained. By taking a sufficient number of terms of the infinite series, an approximate analytical solution so obtained shows good convergence up to about 1300 Hz and also covers most of the range of muffler dimensions used in practice. The transmission loss (TL) performance of the muffler configurations computed by this analytical approach agrees excellently with that computed by the Matrizant approach used earlier by the authors, thereby offering a faster and more elegant alternate method to analyze short elliptical muffler configurations.  相似文献   

10.
There are three effects of grazing mean flow on acoustical characteristics of the micro-perforated panel absorber(1) on radiation impedance of the orifice,(2) on acoustical impedance of the construction at sound wave angle incidence,(3) on sound propagation property in a duct lined by absorber.Based on the acoustical fundamental principle,these effects were analyzed respectively,and relative formulas were derived. Some qualitative tendencies were shown that radiation impedance of an orifice,value ofξin function coth(ξ) which estimates cavity impedance,and transmission loss in a lined duct all will decrease with flow speed increases as well as the resonant frequency will move to lower frequency caused by Doppler Effect,when sound wave propagation direction is the same with flow direction. The discussion was also supported by a relative experimental study.  相似文献   

11.
Analysis and design of pod silencers   总被引:1,自引:0,他引:1  
Parallel baffle mufflers or split silencers are used extensively in heating, ventilation and air conditioning systems for increased attenuation of noise within a short or given length. Acoustic analysis of rectangular parallel baffle mufflers runs on the same lines as that of a rectangular duct lined on two sides. This simplification would not hold for circular configurations. Often, a cylindrical pod is inserted into a circular lined duct to increase its attenuation (or transmission loss), thereby making the flow passage annular and providing an additional absorptive layer on the inner side of this annular passage. This configuration, called a pod silencer, is analyzed here for the four-pole parameters as well as transmission loss, making use of the bulk reaction model.The effect of thin protective film or a highly perforated metallic plate is duly incorporated by means of a grazing-flow impedance. Use of appropriate boundary conditions leads to a set of linear homogeneous equations which in turn lead to a transcendental frequency equation in the unknown complex axial wave number. This is solved by means of the Newton-Raphson method, and the axial wave number is then used in the expressions for transmission loss as well as the transfer matrix parameters. Finally, results of a parametric study are reported to help the designer in optimization of a pod silencer configuration within a given overall size for minimal cost.  相似文献   

12.
This paper considers the combined use of a hybrid numerical method for the modeling of acoustic mufflers and a genetic algorithm for multiobjective optimization. The hybrid numerical method provides accurate modeling of sound propagation in uniform waveguides with non-uniform obstructions. It is based on coupling a wave based modal solution in the uniform sections of the waveguide to a finite element solution in the non-uniform component. Finite element method provides flexible modeling of complicated geometries, varying material parameters, and boundary conditions, while the wave based solution leads to accurate treatment of non-reflecting boundaries and straightforward computation of the transmission loss (TL) of the muffler. The goal of optimization is to maximize TL at multiple frequency ranges simultaneously by adjusting chosen shape parameters of the muffler. This task is formulated as a multiobjective optimization problem with the objectives depending on the solution of the simulation model. NSGA-II genetic algorithm is used for solving the multiobjective optimization problem. Genetic algorithms can be easily combined with different simulation methods, and they are not sensitive to the smoothness properties of the objective functions. Numerical experiments demonstrate the accuracy and feasibility of the model-based optimization method in muffler design.  相似文献   

13.
孙中政  雷坤  王宇飞  韩旭 《应用声学》2021,40(1):156-162
针对汽车进气系统三通管路的特点,提出了多通管路的管壁传递损失测试方法。并以某车型的双涡轮增压发动机进气三通管道为例,采用该方法评价其用塑料代替铝后的声学性能,主要以声传递损失来评价涡轮增压器噪声通过三通连接管路管壁的辐射和透射特性。测试过程中,三通管道的两个连接涡轮增压器端口分别用声源两次发声,靠近进气歧管端口采用两种不同反射末端,然后在每段管路布置两个压力场扬声器进行测试,并基于平面波分离入射波和反射波,同时在三通管道外用声功率半球面十点分布法自由场扬声器测试,经过3次测量来计算管道管壁的声传递损失。由于声传递损失是管道本身特性决定,所以该测试方法能够准确找出塑料件和金属件在不同频率的声学特性差异。而后,在声传递损失测试结果的基础上,结合近场声全息方法和波束形成原理进行声源识别,可知该三通管路材质改为塑料后主要噪声来自焊缝薄弱处的中高频透射声和管壁结构的低频辐射声。  相似文献   

14.
This paper deals with experimental studies on reactive types of muffler—and their combinations with absorption types—in order to determine their noise attenuation characteristics. Tests were carried out on a test rig, with a loudspeaker as the input source, as well as on a four cylinder diesel engine. The frequency spectra of attenuation levels, obtained experimentally, were compared with corresponding theoretical predictions. In addition, the effect on the performance of the engine itself was studied.The results showed, in general, a fairly good agreement between experimental results from test rig and theoretical predictions in the frequency range for which the latter is valid. The attenuation levels obtained from the mufflers fitted on the engine were, in general, lower. The effect on the performance of the engine was marginal. It was seen that the combination mufflers offer a good solution when high noise attenuation is desired.  相似文献   

15.
It is essential when searching for an efficient acoustical mechanism to have an optimally shaped muffler designed specially for the constrained space found in today's plants. Because the research work of optimally shaped straight silencers in conjunction with multi-chamber cross-flow perforated ducts is rarely addressed, this paper will not only analyze the sound transmission loss (STL) of three kinds of cross-flow perforated mufflers but also will analyze the optimal design shape within a limited space.In this paper, the four-pole system matrix used in evaluating acoustic performance is derived by using the decoupled numerical method. Moreover, a simulated annealing (SA) algorithm, a robust scheme in searching for the global optimum by imitating the softening process of metal, has been adopted during shape optimization. To reassure SA's correctness, the STL's maximization of three kinds of muffles with respect to one-tone and dual-tone noise is exemplified. Furthermore, the optimization of mufflers with respect to an octave-band fan noise by the simulated algorithm has been introduced and fully discussed. Before the SA operation can be carried out, an accuracy check of the mathematical model with respect to cross-flow perforated mufflers has to be performed by Munjal's analytical data and experimental data.The optimal result in eliminating broadband noise reveals that the cross-flow perforated muffler with more chambers is far superior at noise reduction than a muffler with fewer chambers. Consequently, the approach used for the optimal design of noise elimination proposed in this study is certainly easy and efficient.  相似文献   

16.
Research on new techniques of perforated silencers has been well addressed and developed; however, the research work in shape optimization for a volume-constrained silence requested upon the demands of operation and maintenance inside a constrained machine room is rare. Therefore, the main purpose of this paper is to not only analyze the sound transmission loss of a multi-chamber perforated muffler but also to optimize the best design shape under space-constrained condition.In this paper, both the generalized decoupling technique and plane wave theory are used. The four-pole system matrix in evaluating the acoustic performance of sound transmission loss (STL) is also deduced in conjunction with a genetic algorithm (GA). To demonstrate the precision of the tuning ability in a muffler, various targeted pure tones are proposed in numerical cases. Results reveal that the maximal acoustical performance precisely occurred in the desired frequency. Furthermore, a noise reduction with respect to full-band exhausted noise emitted from a diesel engine is also introduced and assessed. To achieve a better optimization in GA, several test parameter values were used. Before a GA operation can be carried out, the accuracy of the mathematical models have to be checked by experimental data.The optimal result in eliminating full-band noise reveals that the overall noise reduction of a multi-chamber muffler can achieve 68 dB under space-constraint conditions. Consequently, the approach used for the optimal design of the STL proposed in this study is indeed easy, economical and quite effective.  相似文献   

17.
针对非对称阻抗插入管消声器三维理论建模与求解问题,提出了一种半解析变分建模和求解方法,试验及有限元结果验证了理论模型和求解结果的正确性,开展了模态频率、声压响应及传递损失等声场特性的预测分析。首先构建插入管消声器内部子声场拉格朗日泛函,基于声压与质点振速连续性条件,得到插入管消声器三维理论模型。随后,将子声场声压展开为切比雪夫-傅里叶级数组合形式,按里兹法求得消声器三维声场模态信息。搭建了消声器传递损失试验平台,进行了刚性壁面和阻抗壁面消声器传递损失测试试验,对理论模型和计算结果进行了验证。通过算例分析了壁面阻抗的大小、阻抗面积和分布形式以及插入管偏置对消声器消声性能的影响。结果表明,提出的变分建模求解方法是有效的,对消声器壁面阻抗位置和形式的合理设置可有效降低输出声压。   相似文献   

18.
If the dimensions of a silencer or muffler component are small compared to an acoustic wavelength, plane wave propagation can be assumed. This is not the case for HVAC (heating, ventilation, and air conditioning) duct systems, and large diesel engine mufflers commonly used in ship and generator sets. For such applications, the wave behavior in the inlet and outlet ducts is three-dimensional. In this paper, the finite element method is utilized to simulate large duct systems with an aim to predict the insertion loss. The boundary condition on the source side is a diffuse field applied by determining a suitable cross-spectral force matrix of the excitation. At the termination, the radiation impedance is calculated utilizing a wavelet algorithm. Simulation results are compared to published measurement results for HVAC plenums and demonstrate good agreement.  相似文献   

19.
The control of sound transmission through panels is an important noise control problem in the aerospace, aeronautical, and automotive industries. The trend towards using lightweight composite materials that have lower sound insulation performance is a negative factor regarding low frequency transmission loss. Double-panel partitions with the gap filled with sound absorption materials are often employed to improve the sound insulation performance with reduced added weight penalty. However, in the low frequency range, the strong coupling between the panels through the air cavity and mechanical paths may greatly reduce the sound transmission performance, making it even lower than the performance of a single panel in some frequency ranges. In this work, an experimental investigation of a new kind of hybrid (active/passive) acoustic actuator is presented. The idea consists of replacing the acoustic absorption material by a hybrid actuator aiming at improving the transmission loss at low frequencies without altering the passive attenuation. A prototype of the system is tested in a plane wave acoustic tube setup. Different kinds of SISO feedforward control implementations were used to attenuate the sound power transmitted through the hybrid active–passive panel using an error microphone or a particle velocity sensor placed downstream with respect to the sample panel. Measurement results of the transmission loss with active and hybrid attenuation are presented and discussed.  相似文献   

20.
In the present study, a hybrid method is proposed for predicting the acoustic performance of a silencer for a nonlinear wave. This method is developed by combining two models: (i) a frequency-domain model for the computation of sound attenuation due to a silencer in a linear regime and (ii) a wavenumber space model for the prediction of the nonlinear time-evolution of finite amplitudes of the acoustic wave in a uniform duct of the same length as the silencer. The present method is proposed under the observation that the physical process of the nonlinear sound attenuation phenomenon of a silencer may be decoupled into two distinct mechanisms: (a) a linear acoustic energy loss that owes to the mismatch in the acoustic impedance between reactive elements and/or the sound absorption of acoustic liners in a silencer; (b) a nonlinear acoustic energy loss that is due to the energy-cascade phenomenon that arises from the nonlinear interaction between components of different frequencies. To establish the validity of the present model for predicting the acoustic performance of silencers, two model problems are considered. First, the performance of simple expansion mufflers with nonlinear incident waves has been predicted. Second, proposed method is applied for computing nonlinear acoustic wave propagation in the NASA Langley impedance duct configuration with ceramic tubular liner (CT57). Both results obtained from the hybrid models are compared with those from computational aero-acoustic techniques in a time-space domain that utilize a high-order finite-difference method. Through these comparisons, it is shown that there are good agreements between the two predictions. The main advantage of the present method is that it can effectively compute the nonlinear acoustic performance of silencers in nonlinear regimes without time-space domain calculations that generally entail a greater computational burden.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号