首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
本文发展了一种简单经济的过渡金属锑化物热液合成路线,在160℃的温和条件下,由商业易得的乙酰丙酮基镍和三苯基铋在汕胺介质中还原制备出NiSb纳米颗粒.反应中,还原剂甲硼烷-叔丁基胺络合物的使用能够有效促进金属源的快速还原,用以促进NiSb纳米颗粒的生成.结构表征显示,所制备的NiSb产物为六方相(空间群P6_3/mmc)颗粒状纳米晶,共粒径约为10 nm.该合成方法可拓展用于CoSb和Ag_3Sb等纳米颗粒的温和制备.电催化析氢性能研究显示,NiSb纳米颗粒具有良好的电化学析氢反应性能.结果显示,当阴极电流密度达到50 mA/cm~2和10 m A/cm~2时所需要的过电位分别为531和437 mV.同时,NiSb纳米颗粒还具有较小的电荷转移阻抗和优良的循环稳定性能.  相似文献   

2.
本文报道了一种利用简单的两步牺牲模板法,在泡沫铜基底表面完成了三维氧化铜纳米晶阵列的生长. 氧化铜纳米晶阵列具有良好的导电性,稳定性,在碱性溶液中有着优秀的电解水产氧催化性能. 氧化铜纳米晶阵列催化水的电化学氧化只需400 mV的过电势即可达到100 mA/cm2的电流密度,与其它铜基电解水产氧催化剂以及贵金属IrO2相比都有着明显的优势. 氧化铜纳米晶阵列在270 mA/cm2左右的工作电流下连续工作10 h依然可以保持良好的稳定性,是相同的工作电压下IrO2工作电流的10倍(约25 mA/cm2).  相似文献   

3.
利用一种简单的方法制备不含任何表面活性剂并具有高甲醇氧化活性的Pt和PtRu纳米电催化剂. 以CO为还原剂, CO和多壁碳纳米管(MWCNTs)为保护剂和载体,通过一步反应得到沉积在多壁碳纳米管上Pt纳米粒子,在制备过程中无需使用任何有机溶剂或表面活性剂. 利用循环伏安法和计时电流法表征了所合成催化剂的甲醇氧化活性,甲醇氧化的峰电位(ca. 0.9 V vs. RHE)处的电流密度和比质量电流高达11.6 mA/cm2 和860 mA/mgPt. 在Pt/MWCNTs表面电沉积Ru后,催化剂在低电位处的甲醇氧化活性得到提高,其在0.5和0.6 V的稳态比质量电流分别达到了20和80 mA/mg.  相似文献   

4.
本文通过简单的水热法制备了一种CdO-CdS一维纳米棒阵列,并系统地研究了材料的结构、形貌及其光电化学性质和产氢活性. 所得纳米棒为直径100至200 nm的六方柱. 通过优化煅烧温度和时间得到了该实验条件下光电催化性能最优的样品. 在0 V vs. Ag/AgCl偏压下,CdO-CdS光电流密度为6.5 mA/cm2,光电催化产氢活性为240 μmol·cm-2·h-1,几乎是纯CdS的2倍. 该体系的光电催化性能超过了许多已报道的相似体系. 根据材料结构和光电化学性能表征结果,提出了直接z型光催化机理,该机理可以很好地解释光致载流子的高分离效率和优异的氧化还原性能.  相似文献   

5.
本文采用微纳加工方法制备了负载高密度Ag-Cu纳米颗粒的N掺杂TiO2纳米棒阵列样品. 通过TiO2的N掺杂,可将其吸光范围调控至与Ag纳米颗粒的等离激元吸收频率相匹配的波段,从而实现复合材料中肖特基结与共振能量转移过程的协同作用. 与此同时,Cu纳米颗粒可以为CO2还原提供活性位点. 在全谱光照射下,复合样品光催化CO2还原的活性显著提高,CH4生成速率可达720 μmol·g-1·h-1.  相似文献   

6.
一种印刷型薄膜太阳能电池p-n结调制技术   总被引:1,自引:0,他引:1  
能带值为0.5~0.85 eV材料的稀缺是多结太阳能电池面临的一个主要挑战,本文使用非真空的机械化学法合成了能带值为0.83 eV的Cu2SnS3化合物,使用印刷技术将其制备成吸收层薄膜,并采用superstrate太阳能电池结构(Mo/Cu2SnS3/In2S3/TiO2/FTO glass)对其光伏特性进行了研究.实验表明所制备的太阳能电池短路电流密度、开路电压、填充因子和转换效率分别为12.38 mA/cm2、320 mV、0.28和1.10%.此外,为更好地满足多结太阳能电池对电流匹配的需求,本文对所制备太阳能电池的Cu2SnS3/In2S3 p-n结进行了分析.通过在p-n结界面植入一层薄的疏松缓冲层,使调制后的太阳能电池短路电流密度从最初的12.38 mA/cm2增加到了23.15 mA/cm2,相应太阳能电池转换效率从1.1%增加到了1.92%.该p-n调制技术对印刷型薄膜太阳能电池具有重要借鉴意义.  相似文献   

7.
本文以Co-BTC金属有机框架材料为前驱体,采用连续离子交换法和进一步的高温水热处理来合成片状Ag-CoSO4复合纳米材料. 由于少量Ag的引入有利于增强导电性并加速电子转移过程,该催化剂在1 mol/L KOH电解质溶液中表现出优异的OER性能(在10 mA/cm2的电流密度下过电位仅为282 mV),其性能甚至比RuO2更好. 催化剂中Ag的存在有利于促进Co(IV)的产生进而提高Co(IV)浓度,并且能够调控对氧物种的吸附能而促进OER过程*OOH中间物质的形成,加速了析氧反应过程的进行. 极低含量Ag的使用(低于百分之一原子含量)使得催化剂的成本极大的降低.  相似文献   

8.
潘金平  胡晓君  陆利平  印迟 《物理学报》2010,59(10):7410-7416
采用热丝化学气相沉积法制备B掺杂纳米金刚石薄膜,并对薄膜进行真空退火处理,系统研究了不同退火温度对B掺杂纳米金刚石薄膜的微结构和电化学性能的影响.结果表明,当退火温度升高到800 ℃后,薄膜的Raman谱图中由未退火时在1157,1346,1470,1555 cm-1处的4个峰转变为只有D峰和G峰,说明晶界上的氢大量解吸附量减少,并且D峰和G峰的积分强度比ID/IG值变为最小,即sp2相团簇  相似文献   

9.
合成了纳米纤维状的软锰矿β-MnO2,其研磨后粒子形貌由纳米纤维转变为纳米粒子,相结构并没有转变.纳米纤维状粒子中心锰离子局域环境有轻微改变.当粒子形貌从长纳米纤维变到短纳米纤维再到纳米粒子时,傅里叶转换红外光谱A2u频率逐渐从514 cm-1到574 cm-1再到617 cm-1.研究发现依据功能团分析无法确定额外的振动波段来源于不同尺寸和形状粒子的A2u.通过X射线衍射的Rietveld精修和红外光谱,认为两种MnO6的八面体构型,如4长+2短,4短+2长,在由不同路线合成的软锰矿中都会存在.微结构对软锰矿傅里叶转换红外光谱最大振动频率的影响是显著的.在红外和远红外区域的四个振动波段都做了分类.  相似文献   

10.
青蒿素是一种优异的抗疟药,广泛用于临床医学. 但由于青蒿素天然来源的限制,青蒿素的化学合成一直受到高度关注. 二氢青蒿酸是合成青蒿素的关键前体. 二氢青蒿酸与单线态氧反应形成过氧化物是青蒿素光化学制备中的关键步骤,制约着青蒿素化学合成的产率. 然而关于二氢青蒿酸与单线态氧反应的重要动力学信息并未有报道. 本文通过光敏化法产生单线态氧,研究二氢青蒿酸与单线态氧之间的反应速率常数. 通过直接检测单线态氧在1270 nm处的发光衰减动力学,得出单线态氧与二氢青蒿酸在不同溶剂中的反应速率常数分别为:在CCl4中为1.81×105 (mol/L)-1·s-1,在CH3CN中为5.69×105 (mol/L)-1·s-1,DMSO中为3.27×106 (mol/L)-1·s-1. 发现在三种溶剂中二氢青蒿酸与单线态氧的反应速率常数随着溶剂极性的增加而增加. 这些结果为优化青蒿素光化学合成的实验条件提供了基础知识,有助于提高青蒿素的合成效率.  相似文献   

11.
Catalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) are at the heart of water oxidation reactions. Despite continuous efforts, the development of OER/HER electrocatalysts with high activity at low cost remains a big challenge. Herein, a composite material consisting of TC@WO3@g‐C3N4@Ni‐NiO complex matrix as a bifunctional electrocatalyst for the OER and HER is described. Though the catalyst has modest activity for HER, it exhibits high OER activity thereby making it a better nonprecious electrocatalyst for both OER and HER and is further improved by g‐C3N4. The catalytic activity arises from the synergetic effects between WO3, Ni‐NiO, and g‐C3N4. A Ni‐NiO alloy and WO3 nanoparticles decorated on the g‐C3N4 surface supported toray carbon (TC) matrix (TC@WO3@g‐C3N4@Ni‐NiO) by a facile route that show an excellent and durable bifunctional catalytic activity for OER and HER in the alkaline medium are developed. This carbon nitride with binary metal/metal‐oxide matrix supported with TC exhibit an overpotential of 0.385 and 0.535 V versus RHE at a current density of 10 mA cm?2 (Tafel slopes of 0.057 and 0.246 V dec?1 for OER and HER, respectively), in 0.1 m NaOH . The catalyst is tested in water electrolysis for 17 h.  相似文献   

12.
Designing and developing active, robust, and noble‐metal‐free catalysts with superior stability for electrocatalytic water splitting is of critical importance but remains a grand challenge. Here, a facile strategy is provided to synthesize a series of Co‐based self‐supported electrode materials by combining electrospinning and chemical vapor deposition (CVD) technologies. The Co, Co3O4, Co9S8 nanoparticles (NPs) are formed in situ simultaneously with the formation of carbon nanofibers (CNFs) during the CVD process, respectively. The Co‐based NPs are uniformly distributed through the CNFs and they can be directly used as the electrode materials for hydrogen evolution reaction (HER) in acid and oxygen evolution reaction (OER) in alkaline. The Co9S8/CNFs membrane exhibits the best HER activity with overpotential of 165 mV at j = 10 mA cm?2 and Tafel slope of 83 mV dec?1 and OER activity with overpotential of 230 mV at j = 10 mA cm?2 and Tafel slope of 72 mV dec?1. The onion‐like graphitic layers formed around the NPs not only improve the electrical conductivity of the electrode but also prevent the separation of the NPs from the carbon matrix as well as the aggregation.  相似文献   

13.
The activity of NiO/Co3O4 for the hydrogen evolution reaction (HER) during water splitting was increased by depositing these metal oxides on siloxene multi-sheets. The improvement in active sites due to siloxene was used to increase the catalytic activity. The hierarchical structure of the composite with the synergistic effect of metal oxides helped enhance the catalytic activity to show a low overpotential of 110 mV at 10 mA/cm2 in 1 M KOH and stability at 10 mA/cm2 over 20 h without an obvious change in voltage. The as-prepared catalyst can be a promising electrocatalyst for the HER owing to the low cost of transition metal oxides, the abundance of silicon on Earth, and the simplicity of the synthesis process.  相似文献   

14.
Rapid technological development requires sustainable, pure, and clean energy systems, such as hydrogen energy. It is difficult to fabricate efficient, highly active, and inexpensive electrocatalysts for the overall water splitting reaction: the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). The present research work deals with a simple hydrothermal synthesis route assisted with ultrasound that was used to fabricate a 3D nanoflower-like porous CoMoS4 electrocatalyst. A symmetric electrolyzer cell was fabricated using a CoMoS4 electrode as both the anode and cathode, with a cell voltage of 1.51 V, to obtain a current density of 10 mA/cm2. Low overpotentials were observed for the CoMoS4 electrode (250 mV for OER and 141 mV for HER) at a current density of 10 mA/cm2.  相似文献   

15.
Electrochemical splitting of water is an efficient way to produce clean energy for energy storage and conversion devices. Herein, 3D hierarchical NiCo2O4@NiO@Ni core/shell nanocone arrays (NAs) are reported on Ni foam for stable overall water splitting with high efficiency. The architecture and composition of the 3D catalysts are particularly tuned. The outstanding structural and component features of the as‐prepared 3D catalysts are characterized by the vertically grown NiCo2O4 nanocone/NiO nanosheet core/shell structure and Ni decorated 3D‐conductive networks, which largely prompt the catalytic performance. The hybrid catalyst with core/shell nanocone array structures exhibits superior bifuncational activities for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) with an overpotential of 240 and 120 mV at a current density of 10 mA cm?2, respectively. The Tafel slope of the optimal 3D electrode is about 43 and 58 mV dec?1 in an alkaline electrolyte for OER and HER, respectively. An alkaline electrolyzer constructed by two symmetric NiCo2O4@NiO@Ni electrodes delivers splendid activity toward overall water splitting with a current of 10 mA cm?2 at only ≈1.60 V and almost no deactivation after 10 h. This work provides a promising strategy to design ternary core/shell electrodes as high performance Janus catalysts for overall water splitting.  相似文献   

16.
The continually worsening energy crisis has stimulated research into energy conversion technology to produce pure hydrogen, H2. Transition metal-based compounds have attracted great attention as electrocatalysts for hydrogen evolution reaction (HER) as alternatives to commercial, high-cost, and scarce noble metal-based catalysts. In this work, a 3D flower-like NiS2/MoS2 is synthesized with the advantages of a three-dimensional (3D) morphology and the compositing of different metal compounds, thus leading to enhanced electrocatalytic performance. The structure of 3D flower-like NiS2/MoS2 augments the specific surface areas resulting from nanoplate assemblies as well as the heterointerface ascribed to two different phases of NiS2 and MoS2. These characteristics are confirmed by electrocatalytic measurements of the lower overpotential of 165 mV at 10 mA/cm2 with high charge transfer ability, thus demonstrating the structure's potential for advanced electrocatalysts for the HER.  相似文献   

17.
Hydrogen production by PEM water electrolysis is one of the most efficient methods, due to the produced high purity of gases, high efficiency, and devoid of harmful emissions. In this study, phosphorus-doped carbon nanoparticles (P-CNPs) were synthesized by spray pyrolysis method in chemical vapor deposition (CVD). The synthesized P-CNPs were used as electron carrier support materials for the preparation of P-CNPs-supported palladium (Pd/P-CNPs) electrocatalyst and also used as the hydrogen evolution reaction (HER) electrode in PEM water electrolysis. These synthesized Pd/P-CNPs were characterized by field emission scanning electron microscope, energy-dispersive X-ray spectroscopy, X-ray diffraction, and cyclic voltammetry methods. The membrane electrode assemblies (MEAs) were fabricated using Pd/P-CNPs as a cathode catalyst for the HER and RuO2 as the anode for oxygen evolution reaction (OER). The fabricated MEA electrochemical performances along with their corresponding yields of hydrogen production were evaluated in PEM water electrolyzer single cell assemblies at various experimental conditions. The obtained results showed that the synthesized Pd/P-CNPs observed a current density of 1 A cm?2 at 2 V at 80 °C. Further, long-term stability tested for up to 500 h continuously and showed the reasonable stability with similar electrochemical activity compared to commercial Pt/CB. Hence, the synthesized Pd/P-CNPs could be used as the alternative to Pt-based catalysts for HER.  相似文献   

18.
The development of highly active and cost‐effective catalyst materials toward electrochemical water splitting is of great importance for converting and storing the intermittent solar energy in the form of hydrogen. Herein, for the first time, an ultrathin Fe and N‐co‐doped carbon nanosheet encapsulated Fe‐doped CoNi alloy nanoparticle (FeCoNi@FeNC) composite is obtained and applied as a bifunctional catalyst for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). This catalyst exhibits prominent catalytic performances for both HER and OER, which only requires overpotentials of 102 and 330 mV, respectively, to reach a current density of 10 mA cm?2 in alkaline media. The high catalytic activity is intrinsically associated with the presence of Fe in both nanosheets and nanoparticles, which has triggered the occurrence of coordinative effects between Fe‐N‐C and FeCoNi that are beneficial for HER and OER, as revealed by electrochemical techniques. In an overall water splitting electrolyzer, FeCoNi@FeNC is employed as both the cathode and anode catalysts, achieving 12 mA cm?2 at 1.63 V for a duration of more than 12 h.  相似文献   

19.
Large-scale spindle-like YVO4 particles with an euatorial diameter of 100–150 nm and a length of 300–350 nm were synthesized by utilizing the Y(OH)CO3 colloid spheres as the precursor and NH4VO3 as the vanadium source through a simple solution-based hydrothermal process, for the first time. In the first stage of the reaction, hierarchical flower-like YVO4 spheres were formed. Then, petals of spindle-like YVO4 particles were obtained via a following self-abscission process from these flower spheres. The possible formation mechanism has been discussed in detail. Moreover, the photoluminescent properties of spindle-like YVO4:Ln3+ (Ln=Eu, Dy) nanoparticles were investigated. They might have potential application in advanced flat panel display, minioptoelectronic devices, and biological labeling.  相似文献   

20.
In this study, we investigated the effects of power ultrasound (26 kHz, up to ∼75 W/cm2, up to 100% acoustic amplitude, ultrasonic horn) on the hydrogen evolution reaction (HER) on a platinum (Pt) polycrystalline disc electrode in 0.5 M H2SO4 by cyclic and linear sweep voltammetry at 298 K. We also studied the formation of molecular hydrogen (H2) bubbles on a Pt wire in the absence and presence of power ultrasound using ultra-fast camera imaging. It was found that ultrasound significantly increases currents towards the HER i.e. a ∼250% increase in current density was achieved at maximum ultrasonic power. The potential at a current density of −10 mA/cm2 under silent conditions was found to be −46 mV and decreased to −27 mV at 100% acoustic amplitude i.e. a ΔE shift of ∼+20 mV, indicating the influence of ultrasound on improving the HER activity. A nearly 100% increase in the exchange current density (jo) and a 30% decrease in the Tafel slope (b) at maximum ultrasonic power, was observed in the low overpotential region, although in the high overpotential region, the Tafel slopes (b) were not significantly affected when compared to silent conditions. In our conditions, ultrasound did not greatly affect the “real” surface area (Ar) and roughness factor (R) i.e. the microscopic surface area available for electron transfer. Overall, it was found that ultrasound did not dramatically change the mechanism of HER but instead, increased currents at the Pt surface area through effective hydrogen bubble removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号