首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[Co(30 Å)/Pt(x Å)]20 multilayers with the Pt layer thicknesses varying from 5 Å to 20 Å were characterized structurally by high angle X-ray diffraction, X-ray reflectivity, X-ray absorption spectroscopy and magnetically by X-ray magnetic circular dichroism. It is found that the structure and magnetic properties of Pt have a strong correlation with the Pt layer thickness. The 20 Å thickness Pt layer is not almost influenced by the adjacent Co layer and the nearest neighbors are dominated by Pt-Pt shells. With decreasing Pt layer thickness, the nearest neighbors are gradually dominated by Pt-Co shells and the Pt-Co intermixing regions also remarkable increase at the interfaces, especially for the 5 Å thickness Pt layer. The orbital and spin magnetic moments as well as the ratio morb/mspin all decrease systematically with increasing Pt layer thickness, indicating that the interface atoms are polarized by direct Pt-Co hybridization, but that the adjacent layers are polarized by Pt-Pt interactions.  相似文献   

2.
We present the experimental results on thermally activated magnetization reversal for [Co0.9Fe0.1(5.0 Å)/Pt(20 Å)]4 multilayer. Direct domain observations show that magnetization reversal is initiated with rare nucleation and followed by dendritic growth of domain walls. Based on macroscopic magnetic parameters from experimental data, the dendritic domain growth mode is qualitatively interpreted by Monte Carlo simulations in terms of a simple uniaxial magnetic anisotropy model. Moreover, both time evolution of domain growth observation and magnetic relaxation measurements reveal that CoFe/Pt multilayer has a relatively large activation volume compared with Co/Pt multilayers.  相似文献   

3.
The influence of annealing on the structure and magnetic properties of amorphous Co/Zr and Co/Hf multilayer films was studied with particular attention to the dependence of the magnetic properties, thermal stability and crystallization process on layer composition and thickness. The temperature at which crystallization commences increases from 400 to 460 °C as the layer thickness dZr or dHf increases from 6 to 18 Å, and decreases from 450 to 400 °C as dCo increases from 12 to 18 Å. Multilayers containing 19–60 at% Zr were studied. The specific magnetization was found to increase even below the temperature at which crystallization commences. Our data are compared with non-multilayer Co–Zr amorphous films and rapidly quenched metallic glasses.  相似文献   

4.
The effect of the antiferromagnetic IrMn thickness upon the magnetic properties of CoFe/Pt/CoFe/[IrMn(tIrMn)] multilayers is studied. An oscillatory interlayer coupling (IEC) has been shown in pinned CoFe/Pt(tPt)/CoFe/IrMn multilayers with perpendicular anisotropy. The period of oscillation corresponds to about 2 monolayers of Pt. The oscillatory behavior of IEC depends on the nonmagnetic metallic Pt thickness and is thought to be related to the antiferromagnetic ordering induced by the IrMn layer. From the extraordinary Hall voltage amplitude (EHA) curves as function of IrMn thickness, we report that the oscillation dependence of IEC for the [CoFe/Pt/CoFe] multilayer system induced by IrMn with spacer-layer thickness is a important features of perpendicular exchange biased system.  相似文献   

5.
Investigation has been performed on the interlayer coupling between two Co/Pt multilayers with perpendicular anisotropy separated by Cr spacers. As a function of the Cr spacer thickness, only ferromagnetic interlayer coupling has been observed between the two Co/Pt multilayers in contrast to the oscillatory interlayer coupling between ferromagnetic and antiferromagnetic observed in ferromagnetic layers with in-plane anisotropy separated by Cr spacers. It is the strength of the ferromagnetic interlayer coupling that has been observed to be oscillatory as a function of the Cr spacer thickness with a period of about 7 Å.  相似文献   

6.
The influence of a Bi surfactant layer on the structural and magnetic properties of Co/Cu multilayers grown onto Cu(1 1 0) buffer layer by RF magnetron sputtering has been studied. The results of X-ray diffraction revealed the initial deposition of a 2.0 Å-thick Bi layer onto the Cu buffer layer prior to the deposition of the Co/Cu multilayer yielded high-quality fcc-(1 1 0) oriented epitaxial films. The X-ray photoelectron spectra revealed that Bi was segregated at around the top of the surface. Therefore, Bi was concluded to be an effective surfactant to enhance the epitaxial growth of Co/Cu(1 1 0) multilayer. The maximum giant magnetoresistance and antiferromagnetic interlayer coupling ratios of the Co/Cu multilayers were increased by using the Bi surfactant layer.  相似文献   

7.
We have used ferromagnet/antiferromagnet/ferromagnet trilayers and ferromagnet/antiferromagnet multilayers to probe the grain size dependence of exchange bias in polycrystalline Co/Fe50Mn50. X-ray diffraction and transmission electron microscopy show that the Fe50Mn50 (FeMn) grain size increases with increasing FeMn thickness in the Co (30 Å)/FeMn system. Hence, in Co(30 Å)/FeMn(tAF Å)/Co(30 Å) trilayers the two Co layers sample different FeMn grain sizes at the two antiferromagnet/ferromagnet interfaces. For FeMn thicknesses above 100 Å, where simple bilayers have a thickness-independent exchange bias, we are therefore able to deduce the influence of FeMn grain size on the exchange bias and coercivity (and their temperature dependence) simply by measuring trilayer and multilayer samples with varying FeMn thicknesses. This can be done while maintaining the (1 1 1) orientation, and with little variation in interface roughness. Increasing the average grain size from 90 to 135 Å results in a fourfold decrease in exchange bias, following an inverse grain size dependence. We interpret the results as being due to a decrease in uncompensated spin density with increasing antiferromagnet grain size, further evidence for the importance of defect-generated uncompensated spins.  相似文献   

8.
The present study reports the effect of swift heavy ion irradiation on structural and magnetic properties of sputtered W/Fe multilayer structure (MLS) having bilayer compositions of [W(10 Å)/Fe(20 Å)]10BL. The MLS is irradiated by 120 MeV Au9+ ions of fluences 1×1013 and 4×1013 ions/cm2. Techniques like X-ray reflectivity (XRR), cross-sectional transmission electron microscopy (X-TEM) and DC magnetization with a vibrating sample magnetometer (VSM) are used for structural and magnetic characterization of pristine and irradiated MLS. Analysis of XRR data using Parratt’s formalism shows a significant increase in W/Fe layer roughness. X-TEM studies reveal that intra-layer microstructure of Fe layers in MLS becomes nano-crystalline on irradiation. DC magnetization study shows that with spacer layer thickness interlayer coupling changes between ferromagnetic to antiferromagnetic.  相似文献   

9.
We study magnetization reversal in the interlayer coupled [Pt/Co]5/Ru/[Co/Pt]5 multilayers (MLs) by means of the measurement of extraordinary Hall effect (EHE). Fitting experimental data to a simple model, we determine the interlayer coupling strength for various thicknesses of the ferromagnetic layers at a fixed Ru spacer thickness. It is found that the dependence of interlayer coupling strength on the Pt layer thickness is much stronger than the previous report in the ferromagnetic/nonmagnetic/ferromagnetic multilayers.  相似文献   

10.
Using polarized neutron reflectivity (PNR) measurements together with associated simulation, magnetic structures of two Ni80Fe20 (1 1 1)/Ru (0 0 0 1) multilayer samples with Ru thickness of 9 and 21 Å were investigated under various external magnetic fields at room temperature. The results reveal the existence of layer thickness, interface roughness, magnetic moment, interlayer coupling angle and non-collinear coupling. The former three are independent of Ru thickness; while the latter two are strongly dependent of Ru thickness.  相似文献   

11.
Effects of addition of CuO layers in L10-type FePt thin films are investigated. The ordering temperature of L10-type FePt films can be reduced by CuO addition. The coercivities of 0.78 and 0.82 T are achieved in [Pt(10 Å)/Fe(14 Å)/CuO(2 Å)]10 film annealed at 550 °C for 20 min and [Pt(10 Å)/Fe(15 Å)/CuO(3 Å)]10 film annealed at 600 °C for 20 min, respectively, and these values are compared to the coercivity of 0.8 T in [Pt(10 Å)/Fe(13 Å)]10 film annealed at 650 °C. The thickness of Fe and CuO layers strongly influences the ordering temperature of L10-type FePt and the magnetic properties of the films. The addition of CuO not only brings microstructure and surface morphology changes of FePt film, but also lowers the ordering temperature.  相似文献   

12.
Double-period [(Pt 1.7 nm/Fe 0.9 nm)5Fe(tFe2)]8 and [(Pt 1.8 nm/Fe 0.6 nm)5Fe(tFe2)]8 multilayers with different thickness tFe2 (between 0.23 and 4.32 nm) of the additional Fe layers, prepared by combinatorial sputter deposition, show differences in the mosaic spread and the vertical interfacial roughness when deposited on native or thermally oxidised Si wafers. Simulations of the wide-angle X-ray scattering intensities revealed the presence of interdiffusion in the (Pt/Fe)5 bilayers and systematic variations of the grain sizes, perpendicular to the film surface, as well as the rms variations of the two superlattice periods with the total film thickness. A comparison of ω-rocking scans shows an increase of the correlated vertical roughness of the (Pt/Fe)5 multilayers with the total multilayer thickness.  相似文献   

13.
To observe spin polarization in nonmagnetic layers sandwiched by magnetic layers,119Sn Mössbauer spectra of [Co(20 Å)/Cu(20-x Å)/119Sn(1.5 Å)/Cu(x Å)] (x=0, 5 and 10) multilayers were measured. A magnetic fraction is observed in every spectrum, and the average hyperfine field ¯H f at Sn nuclei in a Cu layer changes from 14 kOe (x=0) to 8 kOe (x=10). It was also observed that the polarization is greatly reduced by adding a Cr layer of only 2 Å to the Co/Cu interfaces. The spectrum of thex=10 film, measured under an external field of 30 kOe, cannot be interpreted without assuming magnetic fractions both in parallel and antiparallel to the external field, which indicates an oscillation of spin polarization in a Cu layer.  相似文献   

14.
The SiNx (20 nm)/Tb30Co70 (90 nm)/SiNx (5 nm)/Co (3–37 nm)/SiNx (10 nm)/Si multilayer films are deposited on naturally oxidized Si wafer by magnetron sputtering. The saturation magnetization (Ms) of the multilayer films is increased with the thickness of high Ms ferromagnetic Co layer. The perpendicular coercivity (HcHc) value is increased with Co layer thickness as the thickness of the Co layer is lower than 15 nm and then decreases drastically when the thickness of the Co layer further increased. The increase of the HcHc value is owing to the interlayer exchange effect [Li Zhang, Physica B 390 (2007) 373] between TbCo and Co layers. Co under-layer with in-plane magnetic anisotropy would pin the magnetic moment of the TbCo layer near by the Co layer and cause the value of HcHc to increase. However, as the Co layer is thicker than a critical thickness, the HcHc value of the multilayer film would decrease. Therefore, the Co layer with in-plane magnetic anisotropy and soft magnetic properties is expected to dominate the magnetic properties of the multilayer films.  相似文献   

15.
Gilbert's damping constants, α, of Co(tCo)/Pt (1.4 nm) multilayer thin films are investigated by Q-band FMR analysis. α is calculated from the resonance width of the FMR spectrum. With decreasing tCo, the α value decreases from 0.034 (tCo=8.7 nm) to 0.023 (tCo=1.8 nm), and then increases to 0.037 (tCo=1.0 nm). The decrease of α with tCo>1.8 nm is probably due to the eddy current loss effects. The increase of α with tCo<1.8 nm would be caused by the increase of the distortion between the Co and the Pt layers at the interface. When the magnetic field direction was changed from θ=90° (parallel to the specimen) to θ=0° (perpendicular to the specimen), the α of all the specimens increased, and a sharp step in α was observed around θ=40°, where the α has the maximum value.  相似文献   

16.
The present work discusses the successful electrodeposition of Cu/Co multilayers, exhibiting appreciable GMR of 12-14% at room temperature. The effect of individual Cu and Co layers on the magnitude and behavior of GMR has been studied. By varying the thickness of individual layers the field at which saturation in GMR is observed can be controlled. It was observed that for lower thicknesses of Co layer, the saturation fields are reduced below 1 kOe. The Cu layer thickness seems to control the nature of magnetic coupling and the saturation field, with the two showing a correlation.  相似文献   

17.
Interlayer exchange coupling that oscillates between antiferromagnetic and ferromagnetic as a function of NiO thickness has been observed in [Pt(5 A)/Co(4 A)](3)/NiO(t(NiO) A)/[Co(4 A)/Pt(5 A)](3) multilayers with out-of-plane anisotropy. The period of oscillation corresponds to approximately 2 monolayers of NiO. This oscillatory behavior is possibly attributed to the antiferromagnetic ordering in NiO. The antiferromagnetic interlayer exchange coupling for the 11 A NiO layer shows an increase in coupling strength with increasing temperature, in agreement with the quantum interference model of Bruno for insulating spacer layers. A coexistence of exchange biasing and antiferromagnetic interlayer exchange coupling has been observed below T=250 K.  相似文献   

18.
Strong effects of ferromagnetic layer (FMCo, and Ni80Fe20) on the magnitude and blocking temperature of exchange coupling are observed in antiferromagnetic NiO-based films NiO (5 nm)/FM1 (t nm)/FM2 (6-t nm). The existence of interfacial spins configuration in glass-like state and FM anisotropy are proposed to interpret a minimum shown in thermal magnetization curves for films with strong exchange coupling effect. The microstructural change of FM layer and the long-range interaction of exchange bias are taken into account to explain a strong dependence of exchange coupling energy density on the thickness tF of FM layer when tF<5 nm.  相似文献   

19.
Superlattices of [001]fcc Co/Pd with varying Co thicknesses from one to eight atomic layers per modulation period were epitaxially grown on NaCl by vapour deposition in UHV. Transmission electron diffraction indicates lattice coherence between the Co and the Pd layers for Co thicknesses up to six atomic layers. If deposited at a substrate temperatureT s=50°C, only the superlattices containing Ci-monolayers show perpendicular magnetization. By raisingT s to 200°C, the perpendicular anisotropy for Co monolayers is increased, and is also observed for Co bilayers. We suggest that this is due tolayer smoothening, which increases Néel's interface anisotropy. For more than 6 atomic layers of Co a loss of coherence is observed atT s=50°C, accompanied by a structure transformation to hcp Co with a (0001)Co(111)Pd orientation.Non-epitaxial polycrystalline [111]-multilayers have a different anisotropy versus thickness behaviour. For such multilayers the range of Co thicknesses giving perpendicular magnetization is extended from 8 Å up to 12 Å atT s=200°C. The different behaviour of the single crystal [001] films is caused by a strong volume contribution to the anisotropy, which favours in-plane magnetization, opposing the perpendicular interface anisotropy. This easy-plane term is attributed to magneto-elastic anisotropy due to stretching of the Co layers, via a positive magnetostriction.  相似文献   

20.
Magnetic and structural properties in [MnPd/Co]10 multilayers deposited onto Si(1 1 1) substrates have been investigated. The dependences of anisotropy and exchange bias on the thicknesses of both MnPd and Co layers have been studied. In most of the samples, the out-of-plane magnetic anisotropy and both large out-of-plane and in-plane exchange biases have been observed at cryogenic temperature below the blocking temperature TB≈240 K. With appropriate MnPd and Co thicknesses, we have obtained samples with a large out-of-plane exchange bias along with a large out-of-plane magnetic anisotropy. The origin of the out-of-plane magnetic anisotropy in the samples has been suggested to be due to the formation of CoPd interfacial alloys which have tensile in-plane strains, while the spin structure of the antiferromagnetic layer at the interface which is believed to be responsible for exchange bias may be the same as that of the bulk material. Also, the present study shows that the interplay between the out-of-plane magnetic anisotropy and exchange bias is evident in our multilayers and plays an important role in the out-of-plane exchange-bias mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号