首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The aim of this work is to improve the mechanical properties of AISI 4140 steel substrates by using a TiN[BCN/BN]n/c-BN multilayer system as a protective coating. TiN[BCN/BN]n/c-BN multilayered coatings via reactive r.f. magnetron sputtering technique were grown, systematically varying the length period (Λ) and the number of bilayers (n) because one bilayer (n = 1) represents two different layers (tBCN + tBN), thus the total thickness of the coating and all other growth parameters were maintained constant. The coatings were characterized by Fourier transform infrared spectroscopy showing bands associated with h-BN bonds and c-BN stretching vibrations centered at 1400 cm−1 and 1100 cm−1, respectively. Coating composition and multilayer modulation were studied via secondary ion mass spectroscopy. Atomic force microscopy analysis revealed a reduction in grain size and roughness when the bilayer number (n) increased and the bilayer period decreased. Finally, enhancement of mechanical properties was determined via nanoindentation measurements. The best behavior was obtained when the bilayer period (Λ) was 80 nm (n = 25), yielding the relative highest hardness (∼30 GPa) and elastic modulus (230 GPa). The values for the hardness and elastic modulus are 1.5 and 1.7 times greater than the coating with n = 1, respectively. The enhancement effects in multilayered coatings could be attributed to different mechanisms for layer formation with nanometric thickness due to the Hall-Petch effect; because this effect, originally used to explain increased hardness with decreasing grain size in bulk polycrystalline metals, has also been used to explain hardness enhancements in multilayered coatings taking into account the thickness reduction at individual single layers that make up the multilayered system. The Hall-Petch model based on dislocation motion within layered and across layer interfaces has been successfully applied to multilayered coatings to explain this hardness enhancement.  相似文献   

2.
Improvement of mechanical and tribological properties on AISI D3 steel surfaces coated with [Ti-Al/Ti-Al-N]n multilayer systems deposited in various bilayer periods (Λ) via magnetron co-sputtering pulsed d.c. method, from a metallic binary target; has been studied in this work exhaustively. The multilayer coatings were characterized in terms of structural, chemical, morphological, mechanical and tribological properties by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy, nanoindentation, pin-on-disc and scratch tests, respectively. The failure mode mechanisms were studied by optical microscopy. Results from X-ray diffraction analysis revealed that the crystal structure of TiAl/TiAlN multilayer coatings has a tetragonal and FCC NaCl-type lattice structures for Ti-Al and Ti-Al-N, respectively, i.e., it was found to be non-isostructural multilayers. An enhancement of both hardness and elastic modulus up to 29 GPa and 260 GPa, respectively, was observed as the bilayer periods (Λ) in the coatings were decreased. The sample with a bilayer period (Λ) of 25 nm and bilayer number n = 100 showed the lowest friction coefficient (∼0.28) and the highest critical load (45 N), corresponding to 2.7 and 1.5 times better than those values for the coating deposited with n = 1, respectively. These results indicate an enhancement of mechanical, tribological and adhesion properties, comparing to the [Ti-Al/Ti-Al-N]n multilayer systems with 1 bilayer at 26%, 63% and 33%, respectively. This enhancement in hardness and toughness for multilayer coatings could be attributed to the different mechanisms for layer formation with nanometric thickness such as the novel Ti-Al/Ti-Al-N effect and the number of interfaces that act as obstacles for the crack deflection and dissipation of crack energy.  相似文献   

3.
In this work, the effect of modulation period (Λ) on Ti/TiN multilayer films deposited on high-speed-steel (HSS) substrates using pulse biased arc ion plating is reported. The crystallography structures and cross-sectional morphology of Ti/TiN multilayer films were characterized by X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM), respectively. Their mechanical properties were determined via nanoindentation measurements, while the film/substrate adhesion via the scratch test. It was found that the highest hardness value reached 43 GPa for the modulation period of 54 nm, while the film/substrate adhesion also reached the highest value of 83 N. Furthermore, the hardness enhancement mechanism in the multilayer films is discussed.  相似文献   

4.
J. Yang 《Applied Surface Science》2007,253(12):5302-5305
ZrC/ZrB2 multilayered coatings with bilayer periods ranging from 4.4 to 35.5 nm were synthesized by r.f. magnetron sputtering. X-ray diffraction, scanning electron microscopy and nanoindention were employed to investigate the microstructure and mechanical properties of the nanoscale multilayers. The results indicated that all coatings had the clear multilayered structure with mixed ZrB2(0 0 1), ZrB2(0 0 2) and ZrC(1 1 1) preferred orientations. The maximum hardness (41.7 GPa) was observed in the multilayer with 27.5-nm thick period, which is about 25% higher than the rule-of-mixture value of the monolithic ZrC and ZrB2 coatings. It also exhibited the best adhesion. Its critical load was over 70 mN. While through insert ZrB2 into ZrC layer periodically, higher residual stress built in ZrC layer can be released.  相似文献   

5.
The structure of n-hexadecanoic acid (HA) multilayers formed by spreading an ethanol solution containing this molecule onto a freshly cleaved mica surface has been studied by atomic force microscopy (AFM). AFM images of multilayers obtained with different coating time showed that HA molecules first formed some sporadic domains on mica surface. With the proceeding of the coating process, these domains gradually enlarged and coalesced, until formed a continuous film finally. It was observed that HA molecules were always adsorbed on mica surface with tilted even-numbered layers structure. The height of the repeated tilted bilayer film was measured to be approximately 3.8 ± 0.2 nm, which implied a ∼60° tilt molecular conformation of the HA bilayers on mica surface. Phase image confirmed that the HA multilayers terminated with the hydrophilic carboxylic acid groups. The formation mechanism of the HA multilayers was discussed in detail. Thus, resulted hydrophilic surfaces are of special interest for further study in biological or man-made member systems.  相似文献   

6.
ZrAlN/ZrB2 multilayered superlattice coatings with modulation periods ranging from 20 nm to 60 nm were grown in magnetron sputtering chamber. X-ray diffraction (XRD), scanning electron microscopy (SEM) and nanoindention were employed to investigate the influence of modulation period on microstructure and mechanical properties of the multilayers. The sharp interfaces and nanoscale multilayered modulation were confirmed by SEM and XRD. The coating with modulation period of 40 nm and modulation ratio of 1:3 showed a marked polycrystalline structure with the strong mixture of ZrAlN (1 1 1), ZrB2 (0 0 1) and ZrB2 (1 0 1) textures. Meanwhile, it also possessed the highest hardness (36.4 GPa), elastic modulus (477 GPa), critical fracture load (76.48 mN), and lower residual stress, compared to those with other modulation periods and monolithic coatings.  相似文献   

7.
ZnO thin films grown on Si(1 1 1) substrates by using atomic layer deposition (ALD) were annealed at the temperatures ranging from 300 to 500 °C. The X-ray diffraction (XRD) results show that the annealed ZnO thin films are highly (0 0 2)-oriented, indicating a well ordered microstructure. The film surface examined by the atomic force microscopy (AFM), however, indicated that the roughness increases with increasing annealing temperature. The photoluminescence (PL) spectrum showed that the intensity of UV emission was strongest for films annealed at 500 °C. The mechanical properties of the resultant ZnO thin films investigated by nanoindentation reveal that the hardness decreases from 9.2 GPa to 7.2 GPa for films annealed at 300 °C and 500 °C, respectively. On the other hand, the Young's modulus for the former is 168.6 GPa as compared to a value of 139.5 GPa for the latter. Moreover, the relationship between the hardness and film grain size appear to follow closely with the Hall-Petch equation.  相似文献   

8.
The structure and mechanical properties of the multilayers consisting of 5-73 nm thick titanium nitride (TiN) and 4.6 nm thick carbon nitride (CN) have been investigated. It has been found that the CN layers are amorphous and the TiN layers thinner than 17 nm are amorphous. The TiN layers become crystallized as the thickness is increased to 30 nm or thicker. The hardness from the composite response of the multilayered films and their substrates determined using continuous stiff measurement is smaller than the film-only hardness (without substrate effects) calculated using Bhattacharya-Nix empirical equation. The hardness increases with raising the thickness of TiN layers. With the crystallization of the TiN layer, the multilayers become even harder than that calculated based on the rule of mixtures. However, no enhancement in hardness has been observed when the TiN layers are amorphous.  相似文献   

9.
TiN/SiC nanomultilayers with various constituent layer thicknesses were prepared by magnetron sputtering using TiN and SiC ceramic targets. X-ray diffractometer, scanning electron microscope, energy dispersive spectrometer, high-resolution transmission electron microscope, atomic force microscope and nanoindenter were employed to study the growth, microstructure and mechanical properties of these films. Experimental results revealed that amorphous SiC, which is more favorable under normal sputtering conditions, was forced to crystallize and grew epitaxially with TiN layers at thicknesses of less than 0.8 nm. The resultant films were found to form strong columnar structures, accompanied with a remarkable hardness increment. Maximal nanoindentation hardness as high as 60.6 GPa was achieved when SiC thickness was ∼0.6 nm. A further increase of SiC thickness caused the formation of amorphous SiC, which blocked the epitaxial growth of the multilayers, resulting in the decline of film's hardness. Additionally, investigations on multilayers different in TiN layer thicknesses showed that they are insensitive in both microstructure and hardness to the fluctuation of TiN layer thickness. The formation of epitaxially grown structure between crystalline SiC and TiN layers was found to be responsible for the obtained superhardness in multilayers.  相似文献   

10.
Raman spectra, atomic force microscope (AFM) images, hardness (H) and Young's modulus (E) measurements were carried out in order to characterize carbon thin films obtained from a C60 ion beam on silicon substrates at different deposition energies (from 100 up to 500 eV). The mechanical properties were studied via the nanoindentation technique. It has been observed by Raman spectroscopy and AFM that the microstructure presents significant changes for films deposited at energies close to 300 eV. However, these remarkable changes have not been noticeable on the mechanical properties: apparently H and E increase with higher deposition energy up to ∼11 and ∼116 GPa, respectively. These values are underestimated if the influence of the film roughness is not taken into account.  相似文献   

11.
The multilayered films were grown via reactive r.f. magnetron sputtering technique by systematically varying the bilayer period (Λ) and the bilayer number (n), while maintaining constant the total coating thickness (~2.4 μm) on silicon(100) substrates. The multilayers were characterized through high-angle X-ray diffraction (HA-XRD), low-angle X-ray diffraction (LA-XRD), HfN and VN layers were analyzed via X-ray Photoelectron Spectroscopy (XPS) and electron and transmission microscopy (TEM). The HA-XRD results showed preferential growth in the face-centered cubic (111) crystal structure for HfN/VN multilayer systems with the (111)[100]HfN//(200)[100]VN epitaxial relation. The maximum coherent assembly was observed with presence of satellite peaks.  相似文献   

12.
Protective hard coatings deposited on magnesium alloys are believed to be effective for overcoming their poor wear properties. In this work, diamond-like carbon (DLC) films as hard protective films were deposited on AZ91 magnesium alloy by arc ion plating under negative pulse bias voltages ranging from 0 to −200 V. The microstructure, composition and mechanical properties of the DLC films were analyzed by scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and nanoindentation. The tribological behavior of uncoated and coated AZ91 magnesium alloy was investigated using a ball-on-disk tribotester. The results show that the negative pulse bias voltage used for film deposition has a significant effect on the sp3 carbon content and mechanical properties of the deposited DLC films. A maximum sp3 content of 33.3% was obtained at −100 V, resulting in a high hardness of 28.6 GPa and elastic modulus of 300.0 GPa. The DLC films showed very good adhesion to the AZ91 magnesium alloy with no observable cracks and delamination even during friction testing. Compared with the uncoated AZ91 magnesium alloy, the magnesium alloy coated with DLC films exhibits a low friction coefficient and a narrow, shallow wear track. The wear resistance and surface hardness of AZ91 magnesium alloy can be significantly improved by coating a layer of DLC protective film due to its high hardness and low friction coefficient.  相似文献   

13.
In the present study, we explored the effect of metallic interlayers (Cu and Ti) and indentation loads (5-20 mN) on the mechanical properties of plasma produced diamond-like carbon (DLC) thin films. Also a comparison has been made for mechanical properties of these films with pure DLC and nitrogen incorporated DLC films. Introduction of N in DLC led to a drastic decrease in residual stress (S) from 1.8 to 0.7 GPa, but with expenses of hardness (H) and other mechanical properties. In contrast, addition of Cu and Ti interlayers between substrate Si and DLC, results in significant decrease in S with little enhancement of hardness and other mechanical properties. Among various DLC films, maximum hardness 30.8 GPa is observed in Ti-DLC film. Besides hardness and elastic modulus, various other mechanical parameters have also been estimated using load versus displacement curves.  相似文献   

14.
The nanoindentation characterizations and mechanical properties of fluorine-doped tin oxide (SnO2:F) films deposited on glass substrates, using chemical vapor deposition (CVD) method, were studied, which included the effects of the indentation loads, the loading time and the hold time on the thin film. The surface roughness, fractal dimension and frictional coefficient were also studied by varying the freon flow rates. X-ray diffraction (XRD), atomic force microscopy (AFM) and frictional force microscopy (FFM) were used to analyze the morphology of the microstructure. The results showed that crystalline structure of the film had a high intensity (1 1 0) peak orientation, especially at a low freon flow rate. According to the nanoindentation records, the Young's modulus ranged from 62.4 to 75.1 GPa and the hardness ranged from 5.1 to 9.9 GPa at a freon flow rate of 8000 sccm. The changes in measured properties were due to changing loading rate.  相似文献   

15.
Lead zirconate titanate (PZT) thin films are deposited on platinized silicon substrate by sol-gel process. The crystal structure and surface morphology of PZT thin films are characterized by X-ray diffraction and atomic force microscopy. Depth-sensing nanoindentation system is used to measure mechanical characteristics of PZT thin films. X-ray diffraction analyses confirm the single-phase perovskite structures of all PZT thin films. Nanoindentation measurements reveal that the indentation modulus and hardness of PZT thin films are related with the grain size and crystalline orientation. The increases of the indentation modulus and hardness with grain size are observed, indicating the reverse Hall-Petch effect. Furthermore, the indentation modulus of (1 1 1)-oriented PZT thin film is higher than those of (1 0 0)- and random-oriented films. The consistency between experimental data and numerical results of the effective indentation moduli for fiber-textured PZT thin films using Voigt-Reuss-Hill model is obtained.  相似文献   

16.
A series of Zr-Si-N composite films with different Si contents were synthesized in an Ar and N2 mixture atmosphere by the bi-target reactive magnetron sputtering method. These films’ composition, microstructure and mechanical properties were characterized by energy dispersive spectroscopy, X-ray diffraction, scanning electron microscopy, atomic force microscopy and nanoindentation. Experimental results revealed that after the addition of silicon, Si3N4 interfacial phase formed on the surface of ZrN grains and prevented them from growing up. Zr-Si-N composite films were strengthened at low Si content with the hardness and elastic modulus reaching their maximum values of 29.8 and 352 GPa at 6.2 at% Si, respectively. With a further increase of Si content, the crystalline Zr-Si-N films gradually transformed into amorphous, accompanied with a remarkable fall of films’ mechanical properties. This limited enhancement of mechanical properties in the Zr-Si-N films may be due to the low wettability of Si3N4 on the surface of ZrN grains.  相似文献   

17.
A novel coating approach, based on laser shock wave generation, was employed to induce compressive pressures up to 5 GPa and compact nanodiamond (ND) powders (4-8 nm) on aluminum 319 substrate. Raman scattering indicated that the coating consisted of amorphous carbon and nanocrystalline graphite with peaks at 1360 cm−1 and 1600 cm−1 respectively. Scanning electron microscopy revealed a wavy, non-uniform coating with an average thickness of 40 μm and absence of thermal effect on the surrounding material. The phase transition from nanodiamond to other phases of carbon is responsible for the increased coating thickness. Vicker's microhardness test showed hardness in excess of 1000 kgf/mm2 (10 GPa) while nanoindentation test indicated much lower hardness in the range of 20 MPa to 2 GPa. Optical surface profilometry traces displayed slightly uneven surfaces compared to the bare aluminum with an average surface roughness (Ra) in the range of 1.5-4 μm depending on the shock wave pressure and type of confining medium. Ball-on-disc tribometer tests showed that the coefficient of friction and wear rate were substantially lower than the smoother, bare aluminum sample. Laser shock wave process has thus aided in the generation of a strong, wear resistant, durable carbon composite coating on aluminum 319 substrate.  相似文献   

18.
Artificially modulated CrAlN/AlON nanomultilayers were synthesized by direct current reactive magnetron sputtering. The microstructure and mechanical properties were evaluated by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and nano-indentation techniques. The crystallization of AlON layer and its influence on the mechanical property of the nanomultilayers were studied. The results revealed that, under the template effect of NaCl structural CrAlN layer, amorphous AlON was forced to crystallize and grew epitaxially with CrAlN layer when AlON layer thickness was below 0.9 nm, leading to an increase of hardness up to 32.8 GPa. With the further increase of the AlON layer thickness, AlON layer gradually transformed into amorphous structure and blocked epitaxial growth of the multilayers, resulting in the decrease of hardness. The effect of CrAlN layer thickness on hardness of CrAlN/AlON nanomultilayers was also investigated. With the decrease of CrAlN layer thickness, the hardness increased gradually. The maximum hardness was 34.7 GPa when CrAlN layer thickness of was 3.0 nm. The strengthen mechanism of CrAlN/AlON nanomultilayers was finally discussed.  相似文献   

19.
By means of the reactive magnetron sputtering method, a series of Nb-Si-N composite films with different Si contents were deposited in an Ar, N2 and SiH4 mixture atmosphere. These films’ chemical composition, phase formation, microstructure and mechanical properties were characterized by the energy dispersive spectroscopy, X-ray diffraction, transmission electron microcopy, atomic force microscopy and nanoindentation. The experimental results showed that the silicon content in the Nb-Si-N composite films can be conveniently controlled by adjusting the SiH4 partial pressure in mixed gas. The hardness and elastic modulus of the Nb-Si-N films were remarkably increased with a small amount of silicon addition and reached their maximum values of 53 and 521 GPa, respectively, at 3.4 at.% Si. Such an obvious enhancement of mechanical properties is related to the increment of crystal defects in the Nb-Si-N films. With silicon content increasing in the films further, the mechanical properties decreased gradually to somewhat a bit lower than those of the NbN film.  相似文献   

20.
B-doped ZnO thin films have been fabricated on fused quartz substrates using boron-ZnO mosaic target by pulsed-laser deposition technique, and the mechanical properties have been studied by nanoindentation continuous stiffness measurement technique and transmission electron microscope (TEM). Nanoindentation measurement revealed that the hardness of B-doped ZnO films, 9.32 ± 0.90 to 12.10 ± 1.00 GPa, is much greater than that of undoped ZnO films and very close to that of traditional semiconductor Si. The mean transmittance (%) is larger than 81% in the visible range (380-780 nm) for all the films, and the Hall effect measurement showed that the carrier density is around 2 × 1020 cm−3 and the resistivity lower than 3 × 10−3 Ω cm. TEM characteristics show undoped thin films have more amorphous area between grains while the B-doped ZnO films have thin grain boundaries. We suggest that the grain boundaries act as the strain compensation sites and the decrease in thickness of grain boundaries enhances the hardness of the B-doped ZnO films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号